
SU-SEL-71-057 

<-p  A Modular Organization of a Digital 
co Integrating Computer for the Numerical 

Solution of Differential Equations N 
CO 
N 
Q by 

E.J.Schulz 

December 1971 

Technical Report No. 3606-6 

; Reproduction in whole or in pert 
is permitted for »ny purpose of 
the    United     Stete*     Government. 

■• 

- 

', n W 

This document has been approved for public 
release and sale; its distribution is unlimited. 

This work was supported in part by the 
Joint Services Electronics Program 
(U.S.Army, U.S.Navy and U.S.Air Force) 
under Contract N00014-67-A-G112-0044 

Reproduced by 

NATSONAL TECHNICAL 
INFORMATION SERVICE 

Springfield, V*.   22151 

/'*» o D D 

|y| m*®m 11., 

J 
I 

RBDIOSnEiM ffßORRTOEW 

SIMIFORD Elf CTROniCS LRRilflTOEllES 
STRSIFORB UIHUEKSITV • Sim 088, CRUFORRIII 



-<afsft*$ —.mm LL!   , 

UNCIASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA -R&D 

ORIGINATING 6r*iviT»  rO«rritirale auf/inr) 
■ / im/.urn^ .infiofflfii.n fyicf f><- entered when the overall report is clas&ilied) 

Stanford Electronics Laboratories 
Stanford University 
Stanford, California 94305  
KIPQR T    TITLE" 

20.  REPORT   StCURITY    CLASSIFICATION 

Unclassified 
2b.   GROUP 

A MODULAR ORGANIZATION OF A DIGITAL  INTEGRATING COMPUTER FOR THE  NUMERICAL SOLUTION 
OF DIFFERENTIAL EQUATIONS 

4       t STRIP^I.'E  NOT E5 (Type ot report and inclusive dotes) 

Technical Report No. 3606-6, December 1971 
»    'Li THORIS» (First name, middle initial, last name) 

E.  J,  Schulz 

6     REPORT   DATE 

December 1971 

7«.   TOTAL  NC. OF PAGES 

83 

7b.   NO.   OF  REFS 

42 
Bd.   CONTRACT   OR  GRANT NO 

N00014-67-A-0112-0044 
b.   PROJEC T NO. 

9«.   ORIGINATOR'S  REPORT NUMBER(S) 

TR No.   3606-6 
SEL-71-057 

9b.  OTHER REPORT NO(S> (Any other numbers  thet may be assigned 
this report) 

,o D.STR.BUTION STATEMENT Reproduct.'or in whole or in part is permitted for any purpose of 
the United States Government. This document has been approved for public release and 
sale; its distribution is unlimited. 

II.   SUPPLEMENTARY  NOTES 12.   SPONSORING MILI TARY   ACTIVITY 

Joint Services Electronics Program 
U.S. Army, U.S. Navy, U.S. Air Force 

The automatic solution of differential equations may be accomplished by either 
modeling the equation on an analog computer or by solving it numerically on a gen- 
eral-purpose computer. Both methods are cumbersome and have the disadvantages of 
low accuracy and slow speed, respectively. The development of the digital differen- 
tial analyzer promised a machine with improved accuracy and speed. The difficulty 
in programming and the reliance on complex switching networks or patch boards brought 
about by ever-increasing parallelism, however, have prevented the full exploitation 
of the DDA capabilities. 

A modular machine structure employing serial-parallel processing and using in- 
cremental integration as its basic algorithm has been developed. The system consists 
of self-contained modules which may be operated independently or may be combined to 
solve numerically one or more differential equations. Modularity and serial-parallel 
processing simplify the communication methods within and between modules to permit 
automatic programming; the hardware requirements are reduced as-in serial processing, 
but the iteration time cannot exceed a fixed maximum regardless of the problem.'  ^ 

To eliminate some of the masked instabilities inherent in circular number sys- 
tems, a two-loop number system is presented. An extension of the two-loop system 
leads to number systems with a hysteresis. Except for the case of multi-bit commu- 
nication, it is possible to predict the outcome of the integrating cycle sufficiently 
to permit post-multiplication of the integral increment by a constant or a variable 
simultaneously with the integrating cycle. This capability considerably reduces the 
solution time and required hardware.  (Continued) 

N 
\ 

DD,FN°OR:J473 
s ".   0101 • 807-6801 

(PAGE   1) UNCIASSIFIED 
Security Classification 

•mtHi H 



UNCLASSIFIED 
curitv Classification Security 

DIGITAL INTEGRATION 
NUMERICAL SOLUTIONS 
INCREMENTAL COMPUTATION 

ABSTRACT (continued) 

Combining the machine with a general-purpose 
computer allows automatic programming and scaling. 
In this environment, the user-generated program 
consists only of the differential equations entered 
in a standard format, declarations of dependent and 
independent variables, the number of coupled equa- 
tions to be solved, and some control statements. 

'- I N K 

ROLE'   WT 

DD ,Fr..1473  BACK) 
(PAGE 2) 

UtCIASSIFIED 
Security Classification 



SEL-71-057 

A MODUIAR ORGANIZATION OF A DIGITAL INTEGRATING COMPUTER 
FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS 

by 

E.  J.  Schulz 

December 1971 

Reproduction in whole or in part 
i» permitted for any purpose of 
the United State« Gorernaent. 

This document has been approved for public 
release and sale; its distribution is unlimited. 

Technical Report No.  3606-6 

This work was supported in part  by the 
Joint Services Electronics Program 

(U.S. Army,  U.S.  Navy and U.S. Air Force) 
under Contract N00014-67-A-0112-0044 

Radloseience Laboratory 
Stanford Electronics Laboratories 

Stanford University Stanford,   California 



©   Copyright  1972 

by 

Eckhard Josef Schulz 

SEL-71-057 ii 



«***s*«se* 

ABSTRACT 

The automatic solution of differential equations may be accomplished 

by either modeling the equation on an analog computer or by solving it 

numerically on a general-purpose computer. Both methods are cumbersome 

and have the disadvantages of low accuracy and slow speed, respectively. 

The development of the digital differential analyzer promised a machine 

with improved accuracy and bpeed. The difficulty in programming and the 

reliance on complex switching networks or patch boards brought about by 

ever-increasing parallelism, however, have prevented the full exploitation 

of the DDA capabilities. 

A modular machine structure employing serial-parallel processing and 

using incremental integration as its basic algorithm has been developed. 

The system consists of self-contained modules which may be operated inde- 

pendently or may be combined to solve numerically one or more differen- 

tial equations. Modularity and serial-parallel processing simplify the 

communication methods within and between modules to permit automatic pro- 

gramming; the hardware requirements are reduced as in serial processing, 

but the iteration time cannot exceed a fixed maximum regardless of the 

problem. 

To eliminate some of the masked instabilities inherent in circular 

number systems, a two-loop number system is presented. An extension of 

the two-loop system leads to number systems with a hysteresis. Except 

for the case of multi-bit communication, it is possible to predict the 

outcome of the integrating cycle sufficiently to permit post-multiplica- 

tion of the integral increment by a constant or a variable simultaneously 

with the integrating cycle. This capability considerably reduces the 

solution time and required hardware. 

Combining the machine with a general-purpose computer allows auto- 

matic programming and scaling.  In this environment, the user-generated 

program consists only of the differential equations entered in a standard 

format, declarations of dependent and independent variables, the number 

of coupled equations to be solved, and some control statements. 
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Chapter I 

INTRODUCTION 

A.  Numerical Solution of Differential Equations 

The quantitative study of physical systems requires the expression 

of the system characteristics in mathematical form. This expression 

usually results in some differential equation which, when evaluated, 

shows behavior corresponding to that of the original system. The equa- 

tions may be linear, nonlinear, or partial differential equations. 

The solution of differential equations requires that we find some 

function y = y(x,C) such that if the function y is substituted in 

the differential equation [say,  dy/dx = f(y,x)]  the result is an 

identity.  Since the function y can be found analytically only in a 

small number of cases, we resort to numerical methods of finding the 

solution. Numerical solutions require the complete specification of 

the differential equation (initial conditions and parameters) and there- 

fore are always particular solutions. The numerical solution may be 

found by either differentiating or integrating, but integration is em- 

ployed almost exclusively because differentiation involves the genera- 

tion of the difference between two very small quantities (which ideally 

tend toward zero) and therefore introduces unnecessary errors. 

Numerical integration is achieved by replacing the integrand with 

some quadrature formula and evaluating this over the required interval 

of the independent variable. In this process the independent-variable 

interval is div.ded into subintervals which are usually of equal lengths. 

Traditionally, two basic methods have been available to obtain the 

numerical solutions of differential equations. The first is to solve 

the equation on a general-purpose computer, using such numerical tech- 

niques as the modified Euler integration, Adam's trapezoidal integration, 

or summation of the Taylor series. The second is to model the equation 

on an analog computer. Given that we desire high-solution speeds and 

accuracies, neither of these methods is ideal. The general-purpose com- 

puter is often too slow, and the analog computer &imply cannot provide 

the accuracy. 
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If, in the system under study, the dependent variables vary only 

with respect to time or some other single independent variable, we have 

an ordinary differential equation; if, on the other hand, the dependent 

variables vary with respect to two or more independent variables, the 

equations will contain partial derivatives.  Because in the analog com- 

puter all integration is with respect to time only, these partial differ- 

ential equations cannot be solved directly.  The use of the "generalized 

integrator," which includes a multiplier, allows in effect integration 

with respect to a variable other than time, but the multiplier also in- 

troduces additional errors and represents additional hardware and cost. 

Because the analog computer is a completely parallel machine (it 

consists of many processors operating simultaneously), its programs must 

be hard wired for continuous operation.  This requires the use of plug 

boards. 

B,  Background 

The earlif development of the digital differential analyzer (DDA), 

which is essentially the digital equivalent of the analog integrator, al- 

lowed the modification of analog computers. Replacing analog integrators 

with DDA integrators resulted in systems capable of high-speed solutions 

and the desired high accuracies; in addition, the independent variable 

was no longer restricted to time as in the analog integrator. 

The first such machine to be built was the MADDIDA (Bartee et al, 

1962), developed in 1950.  It was considered a low-cost device, employ- 

ing a magnetic drum memory to allow arbitrary stored interconnections 

such that any DDA integrator could be connected to any other integrator, 

including itself. The MADDIDA used binary communication, which requires 

a single bit and restricts both the independent variable input and the 

integral output increment to the values of +1 and -1. 

Since 1950, the need for higher speed and accuracies has produced 

many technological improvements. More accurate algorithms were intro- 

duced (Yu, 1968; Nilsen, 1968) and, to increase operating speed, subse- 

quent systems had high degrees of parallelism. This latter trend made 

it practically impossible to retain stored programs, leading to the 

alternatives of single-purpose computers or patch-board programming. 

SEL-71-057 2 



The TRICE (Transistorized Real Time Incremental Computer - Expandable), 

developed by Packard Eell Corporation in 1958 (Mitchell, Ruhman, 1958), 

was such a machine using plug-board programming and parallel processing 

at a rate of 100,000 iterations/sec. 

Past and present DDAs have been designed essentially in the manner 

of analog computers, and it is this analog approach which, in my opinion, 

has prevented the development of a truly general DDA machine which can 

find wide acceptance. Existing DDAs are for the most part "one applica- 

tion" computers, solving the same equations or sets of equations with 

different initial conditions or parameters. They are used for naviga- 

tional calculations, for computation of projectile trajectories, or for 

high-o~der control-system equations. Any change in programming involves 

either hardware modifications (such as plug-board reprogramming) or com- 

plex time and/or space multiplexing schemes to effect the proper inter- 

connection of the various integrators. As a result, these methods se- 

verely limit the application of the machines because they require either 

a great amount of time and skill on the part of a programmer or enormous 

amounts of multiplexing hardware. Such disadvantages have acted as 

strong deterrents to the full exploitation of the inherent capabilities 

of digital incremental integration. 

C.  Statement of the Problem 

This investigation has sought a new approach to the problem, di- 

rected toward the development and organization of a special-purpose 

machine to solve differential equations numerically. The goal is a 

high-speed high-accuracy system that will be compact, adaptable, and, 

above all, easy to use. Although the proposed system has not yet been 

constructed as hardware, it has been simulated on the Stanford Computa- 

tion Center IBM 360 Model 67. 

A new machine structure, the digital incremental computer (DIC), 

based on a modular concept, is proposed. Each module is a separately 

self-contained device that can operate independently or connected to 

other modules on one or several problems simultaneously.  Its structure 

is such that if the system is employed in conjunction with a general 
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purpose computer, it will not only be easy to use but in fact will 

require substantial effort on the part of the programmer to avoid 

using it. A software package, developed by B. Ptrasuraman (Schulz, 

Parasuraman, 1971), will be employed in conjunction with the DIC to 

accept the problem statement virtually in the form that differential 

equations are normally written. Additional statements required are 

the number of equations to be solved, a declaration of the dependent 

and independent variables, and specification of the range and preci- 

sion of the desired solution. The software package will generate the 

program, load the system, and store the solution output for subsequent 

use or for printout and display. 

The system employs serial-parallel processing which, although 

slower than total parallel processing, does not allow the iteration 

time to exceed the time required to process all integrals in one mod- 

ule.  The solution time of equation? that do not require all available 

modules can be decreased by distributing the various integral functions 

over several modules. Serial-parallel processing also allows total com- 

munication within the modules and restrictive communication between mod- 

ules without the necessity of resorting to patch boards or extensive 

time or space multiplexing.  Here, 'total communication" means that any 

integral output can be used as the dependent variable input, or as a 

component thereof, to any or all integrals; this output also can be 

used as the independent variable input to any two integrals. 

Other innovations are the two-loop number system and simultaneous 

integration and multiplication.  It is shown that the two-loop number 

system eliminates instabilities and oscillations encountered when em- 

ploying a circular number system.  Increasing the size of the two loops 

while maintaining the total number-range constant results in number sys- 

tems containing a hysteresis. 

Simultaneous integration and multiplication can decrease the total 

solution time by one half. With the given number system, it is possible 

to make a partial prediction of the outcome of the integration at the 

beginning of each integrating cycle.  This prediction is sufficient to 

allow initiation of the multiplication process of the output by either 

a constant or a function and to complete the multiplication before the 

integral output is generated. 
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A simplified method  is developed  that allows floating-point arith- 

metic yet requires the storing and recalculating of only a single expo- 

nent for each integral.    Furthermore,   this floating-point method does 

permit simultaneous integration and post-multiplication. 

D.      Approach 

Chapter II deals with the principles of numerical solutions and, 

in particular, centers on solutions using digital differential analyz- 

ers. This and the consideration of the basic DDA construction parame- 

ters introduce the proper background for subsequent chapters. 

Chapter III describes the concept of the proposed machine. The 

design goal is outlined, and the necessary requirements to meet this 

goal are established.  In Chapter IV several number systems are inves- 

tigated. The two-loop number system is introduced, and an extension of 

this system leads to a system of overlapping loops. The logical imple- 

mentation is presented for both the circular and two-loop number systems, 

as well as for a multi-bit transfer two-loop system. 

Chapter V considers the conceptual functional block. Several inno- 

vations such as pre- and post-multiplication are incorporated into the 

basic block, and simultaneous integration and post-multiplication are 

introduced. It is shown that the outcome of the integral function in 

single-bit transfer machines can be predicted.  In addition, a floating- 

point arithmetic method is introduced, which requires the storage of only 

a single exponent for the total functional block, 

The multi-module system with serial-parallel processing is presented 

in Chapter VI. Two basic approaches, "horizontal communication" and 

"vertical communication," are considered for inter-module communication. 

Chapter VII discusses the module; processing, intra-module communi- 

cation methods, and the memory organization are examined. Chapter VIII 

outlines the proposed machine. Operating procedures, communication meth- 

ods within and between modules, and the externally generated function in- 

puts are explained. An example illustrates the programming. Chapter IX 

summarizes the work and presents conclusions and suggestions for further 

s tudy. 

5 SEL-71-057 



Chapter II 

PRINCIPLES OF DIGITAL DIFFERENTIAL ANALYZERS 

A.  Principles of Numerical Solution 

To solve numerically for the integral of a function f(x),  the 

function is replaced by a formula that approximates f(x) over a small 

interval of the independent variable x,  and the result is integrated 

over that interval. The equations employed usually require knowledge 

of the previous values of the integral, the function, and some of its 

derivatives. The newly calculated value of the integral then can be 

used as a factor to compute other functions and to repeat the above 

process. When the integral has been formed over the interval for which 

the quadrature formula is valid, that formula must be updated by obtain- 

ing new values for the function and its derivatives. These methods are 

well described in the literature (Scarborough, 1966; Cunningham, 1958). 

In incremental integration, we do not obtain the whole integral 

but only the change of the integral during the subinterval. This change 

then is transmitted to be used as a factor to calculate other functions, 

or it can be accumulated to yield the whole integral value. 

The most commonly used incremental integrating algorithms are rec- 

tangular and modified trapezoidal. 

1.  Rectangular Integration 

If, in the Taylor series 

(x1+1) = f(Xi) + f'(x^ £gt±  + -T £"(xt) AxJ 

gy f "»(Xj) A)cJ + ... (2.1) 

we drop all \   rms on the right-hand side that contain powers of    £x 

greater than     ie,  we have 

f(xi+1) = f(xt) + f ,(xi) Z»ti 

Preceding page blank 
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where 

df(x.) 
f'(x.) =  . * 

l     dx 

Ax. = x. - x . 
l   l   i-1 

Equation (2.2) represents rectangular integration of f*(x) 

with respect to x. Figure 1 is the graphical representation of this 

process. The Tea that is 

bounded by the curve y,  the 

abscissa, and the ordinates at 

the end points of the desired 

finite interval  (x ,x ) is 
o n 

divided into small rectangles 

of height yi 
If 

and width 

n is made to be 
*i- 

Ax0 

Fig. 1.  RECTANGUIAR INTEGRATION, 

integral of y with respect to x 

i+1  i 
very large, which is equivalent 

to making Ax very small, and 

if the function y is well be- 

haved, the sum of these rectan- 

gles is an approximation to the 

over the specified interval: 

£im }    Y.AX. = / n y dx 
1-400 i=o 1 -0 

(2.3) 

If the integral / n ydx = Z,  then the individual Y ^  are the in- 

crements AZ  of the integral, and AZ = Y.AX . 

The digital differential analyzer (DDA) is a device that im- 

plements this incremental integration. Figure 2 illustrates the basic 

construction of a DDA, which requires two registers and two arithmetic 

units, and Fig. 3 is its schematic symbol. The inputs to the DDA are 

the dependent and independent variable increments AY and AX,  re- 

spectively.  In the following, all variables are normalized to unity. 

SEL-71-057 8 



INPUT 

Fig.   2.     DIGITAL INTEGRATOR FOR RECTANGULAR   INTEGRA- 
TION. 

AX- 

AY- > 

AZsY-AX Fig.   3.     DIGITAL 
INTEGRATOR SYMBOL. 

I 

The value of AX is restricted to +1, -1, and 0. The accumulation of 

the AY increments is stored in the Y register and Y is added to 

the content of the R register if AX is positive and subtracted if 

it is negative. The process then is described by 

Yi = X ard 
+ Yo 

j=l  J 

(2.4) 

and 

.1=1 J J 
(2.5) 

where Y  arid R  are the initial values of the integrand and integral, 
o      o 

respectively. These equations can be rewritten as difference equations: 

Yi = Yi-1 + *i 
(2.6) 

SEL-71-057 
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F 

and 

R. = R. - + Y.AX, (2,7) 
l   l-l   i  i 

where R.  is a whole word and is the summation of Y with respect to 

X,  If we consider the maxi^ ,m allowable absolute value of R to be N, 

then, whenever  [R. j exceeds N,  an overflow or underflow occurs which 

represents the output AZ of the DDA. An accumulation of all AZ in 

some other register will again be equal to the summation of Y.AX.  with 

the remainder R.  in the R register: 

R. = R. .. + Y.AX. -NAZ. (2.8a) 
l   l-i   li      i 

i 

t. = 7 Y.AX, - / N 
1   f-i      J  .1   f-L 

R. = 7 Y.AX, - 7 NAZ. (2.8b) 

2.  Modified Trapezoidal Integration 

The approximation of the integral can be improved by using 

trapezoids or some other geometrical areas instead of the elementary 

rectangle. The jiost frequently used higher order integrating rule is 

the modified trapezoidal algorithm; this is an extrapolating algorithm 

rather than interpolating and is physically realizable for a fast sys- 

tem whereas the interpolating system is not (Yu, 1968).  In extrapolat- 

ing trapezoidal integration, we make a correction to the calculated in- 

crement of the integral based on the value of the function derivative 

during the previous interval. The equations for modified trapezoidal 

integration are 

Y = Y   + AY1 (2.9) 

and 

Ri = Ri-1 + Yi^i + I AYi^i (2.10) 
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Because the inherent delays in serial processing systems are 

less than those in parallel systems, the modified trapezoidal integra- 

tion rule is not a proper algorithm for serial machines.  The Rieman 

integrating rule should be used (Monroe, 1962) for these systems. 

B.  PDA Solution of Differential Equations 

A single DDA solves the differential equation dz = ydx. To solve 

more complex equations, several integrators must be interconnected such 

that the resulting circuit models the equation. The basic programming 

techniques are similar to those used for analog computers (Sizer, 1968; 

Forbes, 1956) and are well known. The equation to be solved is rewrit- 

ten in differential form with the highest order derivative on the left- 

hand side and all other terms on the right-hand side. Using the highest 

order differential term as the dependent-variable increment input, it is 

integrated with respect to the independent variable. With successive 

integration, all derivatives of the function can be found, and the terms 

on the right-hand side of the equation can be generated. The sum of 

these terms is equal to the highest order differential and the loop is 

closed.  [Other approaches may result in a simpler program for certain 

problems (Yu, 1968)]. Some examples will be instructive and will serve 

as a comparison to the program and hardware requirement for the proposed 

system. 

C.  Examples 

1.  Example 1 

We will consider the programming of Van der Pol's equation 

d2v       ,., 2, dv 
—-5(1  -v   ) -+ v  =0 
dt 

(2.11) 

with the initial conditions    v    =1.5    and    v    =0.    The maximum v^lue o o 
of    v    and    v    will be less than   2   if    t,    is near unity.    Multiplying 
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this equation by dt and moving all terms but the highest order term 

to the right-hand side yields 

dv = |dv - |v dv vdt (2.12) 

where dv = vdt.  Letting dv be the dependent-variable input to the 

first integrator and dt its independent-variable input, the output 

becomes vdt = dv.  Integrating dv with respect to t results in 

vdt as the output of integrator 2. With the two terms dv and vdt, 

we can now generate dv ai>d close the loop as shown in Fig. 4. 

© 
> 

<D 

d«- 

dv 
vdt 

© 
.      wdw 

®x 

■/© 
v2dv 

Fig. 4.  SOLUTION DIAGRAM FOR VAN DER POL'S EQUATION. 

The program connection is now determined.  To complete the 

program, we must still scale all variables; several methods are possible. 

One approach is to solve a set of algebraic equations for each integrator. 

A single integrator is illustrated in Fig. 5, with the scaling quantities 

M, N, X, Y,  and Z.  If the maximum value 
M 

JL > 

y + N'M 
of the integrand is y 

m 
then 2M>y . —   m 

The number of bits used in the integrand 

Fig.   5.     DIGITAL  INTEGRATOR 
SYMBOL WITH SCALING PARAM- 
ETERS . 

register is    N;     X,  Y,     and    Z are the 
X exponents of 2 such that there are 2 

Y        Z 
2 ,  and 2  increments for each unit of 

the independent-variable input, dependent-variable input, and integral 

output, respectively. The integrator is scaled correctly if 

SEL-71-057 12 



Y + N = M (2.13) 

and 

X + M = Z (2.14) 

- 

All scale factors in the above example are shown in Table 1.  In this 

case, the maximum number of bits was taken to be 16. Note that the 

independent-variable input for integrator 2 has a scale factor differ- 

ent from that of integrator 1. This situation usually arises if the 

Table 1 

d^v        2 dv 
SCALING FOR —- -(l-v)~+v = 0 

dt2 dt 

Integrator 
(No.) 

Function 

(y) m 
M N X V Z 

1 V 2 1 14 -16 -13 -15 

2 V 1.5 1 16 -14 -15 -13 

3 i 1 2 16 -15   -13 

4 V 1.5 1 16 -15 -15 -14 

5 V 1.5 1 16 -14 -15 -13 

6 -£ -1 0 16 -13   -13 

original equation is airgnitude and frequency scaled i.i a fashion similar 

to equations being programmed for analog computers. Unless automatic 

scaling is available, this method is very often the easiest and simplest 

because it eliminates the need to solve the several sets of algebraic 

equations (Peterson, 1968).  If the machine does not allow t:»e use of 

different machine times, the X input for integrator 2 may be gener- 

ated by an additional integrator with a constant multiplication factor 

and M = 2. 

2.  Example 2 

A second example is the equation of a circle: 

13 SEL-71-057 



yy + y + 1 = o (2.15) 

Assume that we want to solve this equation for values of x from x=0 

to x = 2.1;  then,  y = 1, y    = 2,  y   = 2.236,  and y   =2. 
o      o      max max 

Figure 6 is the connection diagram, and the scaling factors are given 

in Table 2 (again for a maximum of 16 bits). 

dx- 

dy 

d*- 

31 
d*- 

© ̂ _-J 

JÜ. _©Hh 

l/y ®; 
, dfl/y) 

l/y © 
-d* 

y 

®) 
-iU 

3- 
Fig.   6.     SOLUTION DIAGRAM FOR    yjT + y   + 1 = 0. 
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Table 2 

SCALING FOR y 
dx ($ 

+ 1=0 

Integrator 
(No.) 

Function 

(y) 
M N X Y Z 

1 y 1 14 -15 -13 -14 

2 i/y 0 14 -14 -14 -14 

3 Vy 0 14 -14 -14 -14 

4 i/y 2 16 -15 -14 -13 

5 y 1 14 -14 -13 -13 

6 y 2 16 -15 -14 -13 

D.  Construction Parameters 

DDAs can be classified by three basic construction parameters 

(Wood, 1965): 

(1) parallel/serial—input-output 

(2) parallel/serial—arithmetic 

(3) parallel/serial—processing of integrators 

Although they do influence system performance, parameters (1) and (2) 

chiefly represent possible trade-offs between solution speed and hard- 

ware on a fixed-ratio basis. For example, if it takes EL clock pulses 

to process an integrator with parallel arithmetic and it takes K_ clock 

pulses to process one integrator of the same bit length with serial arith- 

metic, then for a given machine (serial or parallel) the solution time us- 

ing serial arithmetic will be K_/K- multiplied by the solution time us- 

ing parallel arithmetic regardless of the equation being solved. The 

third parameter, however, represents trade-offs of variable ratios be- 

tween solution speed and hardware complexity. Parallel processing re- 

sults in the highest possible solution speed, and the iteration rate for 

a given word length is constant regardless of the equation being solved. 

15 SEL-71-057 
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A machine that has a fixed number of integrators can solve any problem 

as long as the availability of integrators is not exhausted. For a 

practically sized machine, this might constitute a severe limitation 

on the type of problems that can be solved. 

Programs for parallel-processing machines must of necessity be 

hard wired and the machine, therefore, cannot use stored programs. 

The usual programming method in this case is either permanently wiring 

for a machine that solves only one problem with different equation pa- 

rameters (or initial conditions) or plug-board programming as used on 

analog computers. 

Plug-board programming requires an excessive amount of time compared 

to the solution time. Although this may be acceptable, if the particular 

program is a standard program to be used many times, this method is not 

feasible in a situation where the machine is to be employed by many users 

with different problems.  In addition, wiring errors may easily occur, 

especially in problems requiring a high wiring density. 

The solution time for serial processing DDAs varies directly with 

the complexity of the problem because only one integrator is processed 

at any one time. This, however, considerably simplifies the problem of 

programming. Only one pair of input variables and one output variable 

must be generated or transmitted with stored programs. Limitations on 

size or complexity of problems that can be solved on a particular machine 

are, in this case, set by the size of the available program storage. The 

machine requires only a single processor. 

When programming any DDA, the programmer must be able to manipulate 

the differential equation to be solved in such a way that he can set up 

a solution diagram. This often requires recognition of functions as so- 

lutions to differential equations which, in turn, are necessary for the 

overall solution of the given problem. This requirement on the program- 

mer in itself restricts the practical use of DDA machines to a relatively 

small number of users. One of the most important considerations in this 

work, therefore, has been to develop a machine environment that would 

eliminate the most difficult and time-consuming programming tasks. 
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Chapter III 

CONCEPT OF THE PROPOSED MACHINE 

A.  Requirements 

The objective of this work was to develop a machine that would 

satisfy the following goals.  (1) It is to operate in the environment 

of a computer center mated to either a small or large computer.  (2) 

It must be capable of operating with user-generated programs that spec- 

ify little more than the equation to be solved, the dependent and inde- 

pendent variables, and the accuracy and range of the solution desired. 

The mapping of the equation and the generation of the machine program, 

therefore, must be accomplished automatically.  (3) In addition to act- 

ing as an external device to a general-purpose computer (GPC), it must 

be able to operate independently in the environment of control systems; 

this is important because many control systems are complex enough to 

require the solution of differential equations but do not warrant the 

expenditure of a large high-speed general-purpose computer. 

The basic requirements selected were 

(1) high accurecy 

(2) high operating speed 

(3) ease of programming 

(4) solution repeatability 

(5) solution reversibility 

(6) modularity 

(7) expandability 

(8) adaptability 

Their import in configuring the DIC is discussed in the following sec- 

tions. 

B.  Accuracy and Solution Speed 

With incremental computation, the largest errors encountered are 

the result of quantization and truncation. Typically, the worst possi- 

ble error should not exceed 2~n if n is the length of a whole word 

in number of bits (Mayorov, 1964). In rectangular integration, the er- 

ror e for a monotonic continuous curve is given by e < (y - y ) AX 
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(Braun, 1963).  The precision of the computation varies divectly with 

the length of the word and, unlike general-purpose computers with bit- 

parallel word serial processing, the solution speed is inversely propor- 

tional to the word length and therefore to precision. Basically, preci- 

sion can be increased without limit by using longer words at the expense 

of more time, or solution speed can be increased by sacrificing precision. 

Both alternatives are attractive and their advantages can be selectively 

exploited, depending on the application. 

As noted in Chapter II, the accuracy of calculations can be improved 

by using higner order integrating algorithms such as extrapolating trape- 

zoidal integration. Another method is to employ multi-bit increment 

transfers to reduce the errors introduced by truncation of the integral 

increment. Nllsen (1968) has shovn that multi-bit increment transfers 

permit the use of shorter word lengths and resultant savings in solution 

time without the normally associated penalty of loss of accuracy. His 

method, however, does introduce the restriction that integration can be 

accomplished only with respect to time. Other problems associated with 

multi-bit transfer are discussed in Chapter IV. 

In addition, accuracy can be improved by the use of floating-point 

arithmetic. Although this improvement is less than that achieved by 

multi-bit transfer, floating-point arithmetic does have the additional 

benefit of considerably reducing and possibly eliminating the often very 

difficult problem of scaling. 

High operating speed can be achieved by total parallel processing; 

the result, however, would be incompatible with requirement 3. Serial- 

processing machines operate at high solution speeds for simple equations 

(equations whose solution requires only a few integrations per iteration) 

but, as the complexity of the equation increases, the solution time in- 

creases proportionately without bound. One solution to this dilemma is 

a machine that employs serial-parallel processing. 

C.  Ease of Programming 

The usefulness of any device is directly related to the ease of use 

by the programmer. By incorporating provisions that allow for automatic 
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editing and programming wherever possible, the proposed system can be 

employed without any extra effort when attached to a GPC; in fact, given 

a DIC/GPC system with a built-in translator program and given a problem 

that contains differential equations, it would require considerably more 

effort on the part of the programmer to avoid using the DIC. 

The automatic-editing capability is one of the key features neces- 

sary for successful operation of the system in the computer-center en- 

vironment. 

D.  Solution Repeatability 

Repeatability of operations or calculations is necessary to ensure 

accuracy; furthermore, it allows for some fault detection. Because the 

operating parameters and the initial conditions stored in the DIC are 

not modified or destroyed during processing, it is always possible to 

stop at any point and repeat the solution from its initial value. 

In control-system applications, a given equation oft^n must be 

solved repetitively with only a few changes in parameters, and only these 

initial conditions or parameters must be entered while all others are 

retained. A similar situation occurs when searching for the solution 

of problems with given initial and terminal boundaries, where some ini- 

tial conditions must be changed until the proper solution is found. 

E.  Solution Reversibility 

The DIC is capable of reversing the direction of computation; there- 

fore, we can stop the solution at some point, reverse, and retrace it to 

its initial value. Given the function value at some point in time t., 

we can compute the solution by using a negative time derivative and find 

the solution for the interval from t  to t  where i < j. 

It should be noted, however, that not all solutions are reversible. 

The conditions of reversibility for the solution of linear difference 

equations with constant coefficients are that the highest and lowest 

ordered difference terms of the functions must have coefficients of 

unity (Monroe, 1962). 

19 SEL-71-057 
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F.  Modularity and Expandability 

The size of the DIC sets a limit on the complexity of problems that 

can be solved.  This complexity varies with the order, degree, and the 

number of equations. The question then is how small the machine can be 

without severely restricting its usefulness.  In addition, to retain 

high speeds, we wanted to avoid continuously increasing solution time 

with increasing complexity of the equations to be solved.  The answer 

proved to be a modular system with serial-parallel processing.  Each 

small module is large enough only to solve a reasonable range of prob- 

lems; for more complex problems, it is only necessary to add additional 

modules. The required connection between modules is minimal and, if not 

used by another module, each module can operate independently on differ- 

ent problems.  The result is a modular system that can be closely matched 

to the needs of the user. 

G.  Adaptability 

It is important that the system be adaptable. The design is such 

that with a proper I/O buffer the DIC can be connected to almost every 

existing GPC because the actual operation of the DIC is independent from 

the GPC; the general-purpose computer is used only to translate the equa- 

tion to be solved into a machine program and as an I/O device for the DIC. 

In this configuration, the length of time required for the programming 

and execution of problems containing differential equations can be re- 

duced considerably.  The efficiency of the total computing system is 

greatly increased because the DIC can solve the differential equations 

much faster than the GPC and, as a result, the GPC is free to execute 

other portions of the program simultaneously. As noted above, the DIC 

can operate totally independently, which is particularly useful in con- 

trol systems and circuit applications. The DIC can realize filters, ex- 

tract Fourier coefficients from some signal, or monitor and control pro- 

cesses (Yu, 1967; Raimondi, 1971).  In these applications, the program 

is usually used repetitively and can be entered or changed manually. 
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Chapter IV 

NUMBER REPRESENTATION 

A.  Binary Number System 

Of the ma.iy possible number systems, the binary number system using 

2's complement arithmetic is the most logical choice not only for the DIC 

operation but to ensure compatability with other computing systems.  Be- 

cause the basic-unity increments represent the smallest possible change 

of a word (a binary number), the value of the increment is limited to 0, 

+1, or -1.  If a single bit is used to represent these increments, then 

a "1" represents +1, a "0" represents -1, and an alternating string of 

"l" and "0" represents 0. Generally, this method is called "binary com- 

munication of increments"and was introduced with the design of the MADDIDA. 

To avoid the problem of "zero oscillations," ternary representation 

of increments can be employed. Here we use two bits, usually one sign- 

bit and one magnitude-bit, allowing the representation of the three de- 

sired states (0, +1, -1) and leaving one unused state (-0). 

B.  Circular Number System 

Binary numbers and 2's complement arithmetic leads to a circular 

number system (Braun, 1963; Mayorov, 1964). If we start with some number 

and continuously add positive increments, it will eventually reach the 

positive maximum; with the next positive increment, the number will go 

to the minimum value.  The reverse process occurs if we have negative 

increments. For example, if the range of a number is -N to N-l, then 

when increasing we would have 0, 1, 2, ..., (N-l), -N, -(N-l), ...,-2, 

-1, 0,...;  decreasing, we find the same series but in the reverse order. 

This can be illustrated by considering a simple example of a binary 

number register restricted to three bits. Starting from zero, we add a 

single bit it a time to obtain a series of eight states, as shown in Ta- 

ble 3. The retractive decimal values are tabulated in the tiird column. 

If we consider the highest order bit to be the sign-bit of a 2's comple- 

ment representation, then the decimal values of the binary numbers appear 

in the fourth column and we obtain  (0 1 1) + (0 0 1) = (1 0 0) which, 
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Table 3 

BINARY REPRESENTATION OF NUMBERS 

State 
Binary Decimal Decimal Value for 2's 
Numbers Value Complement Representation 

a 0 0 0 0 0 
b 0 0 1 1 i       ! 
c 0 10 2 2 
d Oil 3 3 
e 10 0 4 -4            | 
f 10 1 5 -3 
g 110 6 -2 
h 111 7 -1 

in decimals, is (+3) + (+1) = (-4). A state diagram for this table 

would show eight states connected in a ring such that there is a path 

from every state to both of its nearest neighbors. One can see that 

using 2's complement representation and allowing overflows will result 

in a circular number system. 

Figure 7 is a graphical representation of the circular number sys- 

tem. Increasing numbers move counter-clockwise on the circle; decreas- 

ing (positive or negative) numbers move clockwise. An overflow occurs 

whenever point S is crossed in 

M.+M-l the counter-clockwise direction 

ar:d the value of the number goes 

from    M-l    to    -M;     an underflow 

occurs whenever    S    is crossed  in 

the clockwise direction and the 

number value goes from    -M    to 

M-l.    The negative portion of the 

circle is larger by one unit incre- 

ment because,   for some n-bit number, 

M-l    corresponds to    2 
,n 

1    and    -M 

corresponds to    -2 

This circular number system 

produces generally accurate results 

It can result  in masked  instabil!- 

Fig.   7.     CIRCULAR NUMBER SYSTEM. 

if taken over a long period of time. 

ties,   however,   if the increment of a number is zero averaged over a period 
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of time (but not instantaneously) and if the value of the number is at 

or near either the positive or negative limit. 

C.  Two-Loop Number System 

The remainder of this chapter deals with a solution to this diffi- 

culty. Let the states in Table 3 be rotated such that the column begins 

with state e and ends with state d. We break the ring by not allow- 

ing any transition to go from e to d or from d to e;  instead, 

let the (+1) transition from d go to a and the (-1) transition from 

e go to h. The result represents a two-loop number system, with the 

two loops joined by transitions between states a and h. 

If the range of a number is -N to N-l, for example, and if the 

number continuously increases starting with some negative value -k, we 

obtain the series -k, (-k + 1), ...,-1, 0, +1, +2 (N-l), 0, +1, +2, ..., 

and so on. A continuously decreasing number starting with yome positive 

value k results in a similar series: -fk, k-1, ..., +2, +1, 0, -1, -2, ..., 

(-N+1), (-N), -1, -2... . 

Using binary numbers with 2's complement representation, we have 

one more negative state than positive states for any given number of 

bits.  If the word length is n bits (plus sign-bit), therefore, the 

maximum value is (2 -1) and the minimum value (negative) is -2 . 

The loop interval, however, must be the same for the positive and nega- 

tive loops. As shown in Fig. 8, the return in the positive loop is to 

zero and the return in the negative loop is to -1. This results in a 

one-unit increment separation of the two loops but ensures equal loop 

intervals.  It is also possible to consider the 2's complement repre- 

sentation of  (-2 ) to represent, instead, the negative equivalent of 

+2n-l 

Fig.   8.     TWO-LOOP NUMBER SYSTEM. 
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zero (-0); in the negative loop, we would have  (2 -1) steps going 

from -0 to -(2 -1)  instead of going from -1 to -2 . 

This two-loop number system eliminates any instabilities or oscil- 

lations such as those that occur in the circular number system because 

the return after an overflow or underflow is to a value other than the 

minimum or maximum.  Table 4 compares the behavior of the two systems 

for a series of increments of the dependent variable which in two places 

contains an "average zero derivative." Figures 9 and 10 illustrate the 

staircase approximations of this function, emphasizing the difference 

between the circular and two-loop number systems. The respective 
i 

f(n). = .£„ AZ.  are plotted. As can be seen from both the table and 

Fig. 10, the "zero oscillations" of the circular number system are not 

predictable. 

Since the weight of the increment AZ is determined by the loop 

length, it is clear that, given the same number of bits for both sys- 

tems, the weight of AZ in the two-ioop system will be 1/2 the weight 

in the circular number system and AZ will occur on the average at 

twice the rate of that in the circular system. 

D.  Overlapping Loops 

The two number systems described can be considered to be two ex- 

tremes. An interesting variation occurs if we extend the two loops 

such that they overlap but are not identical, as shown in Fig. 11. As 

an example, let the positive loop return to -3 and the negative loop 

return to +2. Continuously positive increments would result in the 

following series: 

-n, -n + 1, ..., -3, -2, -1, 0, +1, +2, +3, ..., n-1, -3, -2, -1, 0, +1, ... 

and negative increments would generate 

n-1, n-2, ..., +3, +2, +1, 0, -1, -2, ..., -n + 1, -n, +2, +1, 0, -1, ... 

The second column in Table 5 tabulates the behavior of this number 

system for the same series of increments used in Table 4 and can be 
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Table 4 

GENERATION OF   INCREMENTS FOR CIRCULAR AND TWO-LOOP NUMBER SYSTEMS 

Circular Number System Two-Loop Number System 
Arbitrary 

Input 
(n) (n) 

(An) Remainder        Increment Remainder        Increment 
(=AZ) (=AZ) 

0 0 0 0                      0 0 0 0                     0 
+1 0 0 1                      0 0 0 1                      0 
+2 Oil                      0 Oil                      0 
+2 10 1                    +1 0 0 1                   +1 
+2 111                      0 Oil                     0 
+2 0 0 1                      0 0 0 1                    +1 
+2 Oil                      0 Oil                       0 
+1 10 0                   +1 0 0 0                    +1 
-1 Oil                    -1 111                       0 
+1 10 0                   +1 0 0 0                       0 
-1 Oil                    -1 111                       0 
+1 10 0                   +1 0 0 0                       0 
+3 111                      0 Oil                      0 
+2 0 0 1                       0 0 0 1                     +1 
+1 0 10                       0 0 10                       0 
-1 0 0 1                       0 0 0 1                       0 
+1 0 10                       0 0  10                       0 
-1 0 0 1                      0 0 0 1                       0 
+1 0 10                       0 0 10                       0 
+1 Oil                       0 Oil                       0 
+1 10 0                    +1 0 0 0                    +1 
+1 10 1                       0 0 0  1                       0 
-2 Oil                     -1 111                       0 
-2 0 0 1                       0 10 1                       0 
-2 111                       0 111             -1 
-2 10 1                       0 10 1                       0 
-1 10 0                      0 10 0                       0 
-1 Oil                     -1 111              -1 
-1 0 10                       0 110                       0 
+1 Oil                      0 111                      0 
-1 0 10                       0 110                       0 
+1 Oil                      0 111                       0 
-1 0  10                       0 110                       0 
-1 0 0 1                       0 10  1                       0 

fwi'Atfj 
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8     12    16   20   24   28 t 8     12    16   20   24   28 t 

Fig. 9. INCREMENTAL INTEGRA- 
TION, USING CIRCULAR NUMBER 
SYSTEM. 

Fig.   10.     INCREMENTAL INTEGRA- 
TION,   USING TWO-LOOP NUMBER 
SYSTEM. 

! 
1   1 

-n -o-l n-l 

Fig.   11.     TWO-LOOP NUMBER SYSTEM WITH OVERLAPPING LOOP. 
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Table 5 

GENERATION OF  INCREMENTS FOR SYSTEMS WITH OVERLAPPING LOOPS 

i 

Arbitrary 1-Bit Hysteresis 2-Bit Hysteresis 
Input 
im R                  AZ R                 AZ 

0 0 0 0           0 0 0 0           0 
+1 0 0 1 0 0 1 
+2 Oil Oil 
+2 110         +1 111         +1 
+2 0 0 0 0 0 1 
+2 0 10 Oil 
+2 10 1        +1 111         +1 
+1 110 0 0 0 
-1 10 1 111 
+1 110 0 0 0 
-1 10 1 111 
+1 110 0 0 0 
+3 0 0 1 Oil 
+2 Oil 111      +1 
+1 10 1         +1 0 0 0 
-1 10 0 111 
+1 10 1 0 0 0 
-1 10 0 111 
+1 10 1 0 0 0 
+1 110 0 0 1 
+1 111 0 10 
+1 0 0 0 Oil 
-2 110 0 0 1 
-2 10 0 111 
-2 0 10         -1 10  1 
-2 0 0 0 0 0 1         -1 
-1 111 0 0 0 
-1 110 111 
-1 10 1 110 

+3         011- +3         0 11-1 
+2         0 1 0-1- +2         0 10 
+1         0 0 1 +1         001- 

0        0 0 0 0         0 0 0 
-1      111 -1      111 
-2         110 -2         110-J 
-3         10 1^ -3         10 1 
-4         100- -4         1 0 0 — 
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compared to the behaviors of those systems. Figure 12 illustrates the 

staircase approximation for the same function, using the number system 

with a slight hysteresis of one-bit.  "Hysteresis" here means that the 

loops are not separated by one or more bits and that the returns from 

the maximum and minimum are to two different values.  The third column 

in Table 5 lists the same function, using a number system with a two-bit 

hysteresis: its staircase approximation is shown in Fig. 13. Although 

these systems do not eliminate all instabilities, they do prevent oscil- 

lations in the case of very small function changes at or near the maxi- 

mum or minimum level.  Input sequences that conceivably could cause in- 

stabilities are not likely to be encountered. 

16 20 24 28 t 0  4 8  12 16 20 24 28 t 

Fig. 12.  INCREMENTAL INTEGRA- 
TION, USING A NUMBER SYSTEM 
WITH 1-BIT HYSTERESIS. 

Fig. 13.  INCREMENTAL INTEGRA- 
TION, USING A NUMBER SYSTEM 
WITH 2-BIT HYSTERESIS. 
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E.   Logical Implementation 

1. Circular Number System 

The logical implementation of the circular number system re- 

quires only 2's complement arithmetic and normal overflow detection. 

This means that an increment is generated whenever there is a carry-bit 

(or borrow when subtracting) into but not out of the most significant 

bit (the sign-bit) or when there is a carr -bit out of but not into the 

most significant bit. The sign of the increment is always equal to the 

sign of the number before addition or subtraction. The implementation 

of the two-loop system varies slightly. 

2. Two-Loop Number System 

Let R, Y,  and R* be the sign-bits of the previous remain- 

der, the integrand, rind the new remainder, respectively, using 2's com- 

plement representation ("O" = positive, "1" = negative). Here,  C is 

the carry into the sign-bit when adding or the borrow when subtracting; 

S is the add/subtract control bit and is "1" for addition and "0" for 

subtraction. We then want R* and  JAZ| as a function of R, Y, and 

S.  The function F is necessary to eliminate C. 

From the map of R* and AZ (Fig. 14a), we can derive the 

equation 

R* = RY'S' + RYS + RY'C'S + R'YC'S + R'Y'CS' + RYCS'    (4.1a) 

or 

R* = |[(R © Y 0 S)R]' [(R © Y © C)(R © Y © S)']'}' (4.1b) 

If F is the output of a full adder/subtracter on R, Y, C,  and S, 

we see from the map of F (Fig. 14b) that 

F = R*    if  AZ = 0 (4.2a) 

and 

F jt  R*    if  [AZJ = 1 

In the latter case F = R'. 
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0,+l 0,0 1,0 0,0 

0,0 1,0 1,-1 1,0 

RY 

00  01  11  10 

sc 

00 

01 

11 

10 

——— ■ 

0 1 0 1 

1 0 1 0 

1 0 1 0 

0 1 0 1 

(a) (b) 

SC 

00 

01 

11 

10 

RY 

00  01  11  10 

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 o 

R © Y © S 

(c) 

Fig. 14. KARNAUGH MAPS FOR 
INTEGRAL OVERFLOW GENERA- 
TION. 

The function R©Y© S  (Fig. 14c) covers all the cases where 

F £  R*; therefore,  R* can be expressed as 

R* = F(R © Y © S)' + (R © Y © S) R (4.3) 

Similarly from the maps, 

|AZ|   = R'Y'SC+  R'YS'C   + RYSC '   + RY'S'C  =   (R © Y © S)(Y © C)     (4.4) 

but 
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because 

F = R © Y © C (4.6) 

Therefore, 

AZ = (R© Y © S)(F © R) (4.7) 

Again from the maps, 

JAZ | = (R © Y © S) (F © R) = R* © F (4.8) 

This can be checked quickly by manipulation of R*©F: 

R* © F = [(R © Y © S)R + (R © Y © S) 'F] © F 

= (R©Y©F)RF' + [(R© Y © S)R]* [(R © Y © S) 'F] 'F 

= (R © Y © S)RF* + (R © Y © S)R'F (4.9a) 

R* © F = (R © Y © S) (F © R) (4.9b) 

The sign of AZ must always be equal to the sign of R. The AZ gen- 

eration of the two-loop system then is identical to that of the circular 

number system, but the sign-bit of R is inhibited from changing when- 

ever |AZ| =1. 

3.  Multi-Bit Transfer Two-Loop Number System 

The above equations were based on unity-increment transfers, 

which means that AZ can only be 0, +1, or -1. To allow the increment 

of AZ to take on values such that  (-n) < AZ < (+n),  the AZ genera- 

tion must be changed from detecting single-bit overflows or underflows 

to multi-bit detection. Clearly, we could duplicate the logic described 

for single-bit detection and use this same logic for every AZ bit. For 

small n,  this may not be too costly but, as n increases, this approach 
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would become uneconomical; furthermore, each detection stage introduces 

some additional delay that must finally propagate up to the highest or- 

der bit. 

Proper multi-bit over- or underflow detection for the two-loop 

number system can be accomplished by using the previously described logic 

inserted between the most significant bit of R and its sign-bit in the 

same manner as in the unity-increment case. Let that portion of R which 

is to be read out as AZ be AZ*,  as shown in Fig. 15. 

0E- 
TECTOR At 

LEAST 
SIGNIFICANT 

B'T 

Fig.   15.     INCREMENT DETECTION FOR MULTI-BIT TRANSFER TWO-LOOP SYSTEM. 

All the previous equations hold, with the exception of the 

equations for |AZ|, and their terms refer to the same variables as 

before.    Again, 

R* =   |[(R © Y © S)R]'   [(R © Y©C)(R© Y© S)']'}* (4.10) 

and 

R*© F =   (R © Y © S)(F © R) (4.11) 

however, here R* © F does not give the magnitude of AZ but rather 

serves to indicate whether |AZ| is at its maximum. If AZ  is the 1     ' m 
most significant magnitude bit  of    AZ,     then 

AZ    = R  •   (R*© F)' 
m 

(4.12a) 

or 

AZ    = R[(Y © S) + F] 
m 

(4.12b) 
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Therefore, if K*©F = 0, we can determine AZ by taking the sign- 

bit of R, copying this bit twice as the sign and highest order bits 

of AZ,  and reading out the remaining AZ* bits. All AZ* bits must 

then be reset to be equal to the sign-bit of AZ. For example, let the 

R register contain 

Sign AZ* 
r 1 
0 10 

R-AZ* 

10 110 

and let AZ* contain three bits; then, if the least significant bit of 

R is on the right, the left-most bit is the sign-bit of R,  the next 

three bits are AZ*,  and the remaining bits are R - AZ*. If R* ® F = 0, 

then 

AZ = 0 0 0 10 

and the new value for the    R    register is 

000 10110 

For an example with negative R,  let R be 

101        10101 

If    R* + F = 0,     then 

AZ = 1 1        10 1 

and the new    R    is given by 

R=l        111        10101... 

If R* © F = 1, we have a carry (or borrow) into the sign-bit which, 

however, is inhibited from changing. This means that AZ car. now be 

determined by again taking the sign of R as the sign of AZ, copying 
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the inverse sign of R into the most significant bit of AZ, and read- 

ing out the remaining AZ* bits. Again, all AZ* bits should be reset 

to be equal to the sign-bit of AZ. 

In the case where R* © F = 1,  however, it should be noted 

that all bits in the AZ* register will always be equal to the sign of 

AZ and therefore need no resetting because the AZ* register is always 

reset after readout, and the maximum value that can be added to a AZ* 

register of n bits (excluding the sign-bit) is  (2-1) plus a carry 

(or borrow) from the lower order bits of K. As a result, because AZ 

is a word that is longer by one-bit than AZ*,  the maximum value achieved 

by a AZ of n bits (plus sign-bit) is 2    and the minimum value is 

-2n-1-l. 
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Chapter V 

THE FUNCTIONAL BLOCK 

Conceptually, the basic DIC module is made up of a number of iden- 

tical functional blocks, each containing 

(1) memory locations for tne integrand, integral, and the 
dependent-and independent-variable increments 

(2) an arithmetic unit (processor) which, when given the 
integrand increments and independent-variable incre-* 
ments as inputs, will produce the integral increments 
and remainder 

Each block (Fig. 16) receives four inputs AV., AX , A,  and B 

and generates as its output 

&W. « A B ViAXi (5.1) 

where V is the dependent variable 

being integrated with respect to X. 

The processor contains the functions 

of integrand-increment and integral- 

increment multiplications by A end 

B,  respectively. 

Aw *ABvAX 

Fig. 16.  FUNCTIONAL BLOCK OF 
PROPOSED MACHINE. 

A.  The Integrating Function 

Figure 17 is a flow diagram of the functional block. We shall 

first consider the integration without multiplications by A or B. 

Ax 

1 

I A 
Ay| 

V 
Av r 

i 
&£ 

L 
Aw 

rig.   17.     STRUCTURE OF FUNCTIONAL BLOCK. 
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The flow diagram of this sub-block is that portion of Fig. 17 which ih 

enclosed by the dotted line. The inputs are AX and AY and the out- 

put is AZ = Y AX. The equations describing the operation of the sub- 

block are 

1     O    /w- ,?*" j I (5.2a) 

Y. = Y   + AY. 
l    l-l    l 

(5.2b) 

and 

l   l-l   i l      i 
(5.3) 

AZ. 
Y.AX. + R, „ - R. 
l l   i-1   l 

(5.4) 

Explicitly, 

AZ.   =   (R.   ,   + Y.AX.   > M)  -   (R.   „   + Y.AX.<-M) 
l l-l l     l — i-1 l     l 

(5.5) 

and 

Z.   = I   /    AZ. 1 M + R. 1       l-l       l} 
(5.6) 

Substituting for    AZ., 

(5.7a) 

or 

5.   = I   7    Y.AXj +  R 1   Viti J J/    ° 
(5.7b) 
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which is approximately 

■■' ff 
y dx + R (5.7c) 

In these equations,  M is the capacity of the integrand and re- 

mainder words and is 2 ,  where n is the number of bits not including 

the sign-bit.  Equations (5.3) to (5.5) implement the two-loop number 

system. Equation (5.3) can be rewritten as 

Ei = Ri-1 + V^i " SigD (Ri-l) M (5.8) 

since the sign of AZ.  is always equal to the sign of R  ,  as shown 

in Eq. (5.5), and the magnitude of AZ  is equal to 1 or 0. The effect 

is that if R is in the neighborhood of but less than H and the Y.AX. 

are positive, then R will reach (M-l) and with the next unit incre- 

ment will go to zero instead of to the most negative value (-M). A sim- 

ilar but reverse process occurs if R and the Y AX  are negative. In 

this case R will eventually reach -M and with the next increment will 

go to -1. Thus we have two separate loops, the positive going from 0 to 

M-l and the negative going from -1 to -M. 

B.  Constant Multiplication 

Now let us consider the total functional block. Even linear differ- 

ential equations with constant coefficients require thav some terms be 

multiplied by constants.  In addition, a method of problem scaling relies 

on constant multiplication of the integrand and the integral increments. 

The functional block therefore contains both of these multiplications. 

Multiplication by A will be called "pre-multiplication" since it 

occurs before integration; similarly, multiplication by B will be 

called "post-multiplication" because it is an operation on the integral 

result. Pre-multiplication is limited to positive constants  (A) which 
a 

are positive integer powers of 2 (A = 2 ,  a = positive integer);  post- 

multiplication is limited to positive or negative constants  (B) whose 
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absolute value is equal to or less than 1 (-1 < B < +1).  I'sing the 

multiplication factors A and B simultaneously allows the integral 

to be multiplied by any desired constant; for example, the multiplica- 

tion factor of -3 is derived by setting A = 4 and B = -3/4. 

The limitations set on A and B are dictated by the operating 

principle of the DIC. Considering post-multiplication first, it is 

clear that the integral increment is generated at some rate determined 

by both the dependent and independent variables and that this rate can- 

not exceed the maximum machine rate which is equal to the maximum num- 

ber of iterations/sec. The highest possible rate occurs when the inde- 

pendent-variable increment has a rate jqual to the maximum machine rate 

and when the absolute value of the corresponding dependent variable is 

at a maximum. Under these conditions, the integral-increment rate is 

approximately equal to the maximum machine rate. Any rate multiplica- 

tion, therefore, must be limited to factors whose absolute values are 

equal to or less than 1. 

Similar arguments apply to pre-multiplication. Given an integrand 

word with maximum length of n bits, the highest precision is achieved 

by setting the unit increment equal to 1/(2 -1) of the maximum possi- 

ble integrand value.  The unit increment is de: ined to be the smallest 

allowable increment of a variable or function.  If in some calculation 

we desire naximum accuracy and if the dependent-variable increment con- 

sists of a single-unit increment, then it is not possible to multiply 

this increment by any factor less than 1. The restriction of the factor 

A to powers of 2 is a practical consideration and simplifies the logical 

implementation.  Since the pre-multiplying factor appears mathematically 

outside the integral, it is not necessary to include sign reversal if 

that is available in post-multiplication. 

If, in some calculation, precision is to be sacrificed for speed, 

the maximum length of the integrand words may be scaled down by uniformly 

pre-multiplying the integrand increments of all integrands by the same 

factor. This new factor then is considered to be the unity multiplica- 

superimposed.  In th:e case, the factor A may be less than 1 (A = 2 , 

tion factor and any further multiplication necessary for the function is 

superimposed.  In th:s= case, the factoi 

a = 0, ±1, ±2 ...) but still positive. 
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C.   Implementation 

The implementations of pre- and post-multiplication are quite dif- 

ferent ■'"-•om each other.  In pre-multiplication, the value of the incom- 

ing increment is multiplied by the multiplication factor and the result 

is immediately added to the integrand (pre-multiplication is the normal 

multiplication of two numbers). For post-multiplication, this method 

is only possible and necessary for multi-bit transfer machines.  If we 

want the output to be a single magnitude bit which limits it to the val- 

ues of +1, -1, or 0, then some form of rate multiplication is required. 

We could use a second identical functional block, set the value of the 

integrand to be equal to the desired post-multiplication factor, and use 

the output of the first block as the independent-variable increment in- 

put. The dependent-variable increment would remain zero. This, in fact, 

is the method normally used in DDA machines. 

In a parallel-processing machine the use of integrators for constant 

multiplication becomes rather expensive and the availability of integra- 

tors is quickly exhausted.  In a serial-processing machine this method 

causes the solution speed to decrease considerably, since in this case 

the time required for constant multiplication is equal to that required 

for integration. 

Incorporating post-multiplication into the basic functional block 

somewhat reduces the extra hardware required otherwise, and also decreases 

the total time spent on multiplication. Both time and hardware can be 

saved, for example, by eliminating the circuit function which for the in- 

tegration function adds the dependent-variable increment to the integrand. 

Including the two multiplication functions in the functional block 

results in the equations below describing its operation.  In these equa- 

tions,  M and M2 are the scale factors,  R and R2 are the remain- 

ders of the integrating function and post multiplication, respectively, 

and AV and AW are problem variables and are the dependent-variable 

increment and the multiplied integral increment. 

A V, = A V 
i     o 

A AV, (5.9) 
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Y =AV = A V. , + A ^ 
i     l     l-l      l 

(5.10) 

R. = R. ., + Y.AX - M AZ. 
l   l-l   l 1      l 

(5.11) 

R2. = R2J , + B AZ. - M2 AW. 
l    i-1      l       l 

(5.12) 

AZ. = 
l 

A V.AX. + R. « - R. 
l  l   l-l   l 

M 
(5.13) 

AW. = 
l 

B AZ. + R2 , - R2 
l r^l l 

M2 
(5.14) 

This equation is implemented thus: 

AW = (R2 , + B AZ > M2) - (R2. , + B AZ. < -M2) 
i     l-l      i —        l-l      l 

(5.15) 

The algorithm then yields 

W = M 
l 

J=l 
AW I M2 + R2. 

3 1 i 
+ R. (5.16) 

Substituting for AW. we have 

W. = M 
l 

^- B AZ + R2   - R2. 

*   1   —1^ I + R2i + Rj      (5.17a) 

W = M 
l 

/  (B AZ. + R2 . , R2.) + R2. 
3 j-1    J      1 

+ R, (5.17b) 

or 

W = M 
i 

/ B AZ. + R2 
t-U .1    o 
J=l 

+ R. (5.17c) 
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Substituting for AZ.  results in 

W. 
A V.AX, + R , 

H 
+ R2 + R. (5.18a) 

or 

\=B1 A V.ÄX. + R  -R +MR2  +R J j   o   l     o   i 
(5.18b) 

i 
which finally can be written as 

W =AB 
l 

l 

X V.AX. + R + M R2 
o     o 

(5.19) 

In the preceding sections all numbers were considered to be integers. 

It is customary, however, to normalize all values such that the maximum 

absolute value of the integrand may not exceed unity.  In this case, M = l 

and the smallest possible increment of Y is AY = 1/2 ,  where n is 

again the number of bits excluding the sign-bit.  It is clear, however, 

that the largest positive and negative values which may be contained in 

Y are (1-1/2 ) and  (-1),  respectively.  It is therefore not possi- 

ble to multiply by +1 without some modification. A simple method to 

allow multiplication by +1 is to include an additional bit in the post- 

multiplier representing unity. This is not a problem in the case where 

separate integrators are used for constant multiplication because the 

second integrator in that case is deleted. 

Using normalized values, the equations of the functional block are 

Y = A Vi_1 + A AVt (5.20) 

Ri = Ri-1 + V*i AZ, (5.21) 
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R2. = R2. , + B AZ  - AW 
l     7.-1       1     1 

(5.22) 

Z. = A 
l 

7 V.AX. + R (5.23) 

W. = A B 
l 

i 

/ V.AX. + R + R2 
o    o 

(5.24) 

D.  Post-Multiplication by a Variable 

Let us again consider the basic functional block with inputs AY,AX 

and output AZ = Y AX and let us assume that the equation solution re- 

quires the generation of g dz s G AZ = AW. Taking a separate integra- 

tor, we may obtain the increments AW by using AZ as the independent- 

variable increment and AG as the dependent-variable increment, thus 

giving AW = G AZ = G Y AX. The same result may be achieved by using a 

built-in post-multiplier; however, the required input would be G and 

not AG which means that G must have been generated elsewhere in the 

problem solution.  In problems requiring function multiplications, the 

capability of built-in post-multiplication by a function can save con- 

siderable time and hardware. A few simple examples will demonstrate 

potential time savings. The functional block symbol (Fig. 18) of the 

proposed machine has one extra output A Y AX which will be discussed 

later. 

AX- 

Av- ZL-AV- F= -AVAX -ABvAx Fig. 18.  FUNCTIONAL 
BLOCK SYMBOL. 

Example 1. 

Inversion: Given dy,  generate 1/y. Figure 19a is the conven- 

tional DDA diagram, and Fig. 19b is the diagram using built-in post- 

multiplication. The inverse is generated by solving 
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® ■ -(?)' dy (5.25) 

dy 

l/y > '/» >-, 
-!/» dy*d(l/y) 

a. Conventional DDA solution 

Solution,using 
built-in post- 
multiplication 

i/y *H d(i/y) 

Fig.  19.     GENERATION OF    1/y. 

Example 2. 

Generate the functions    sin use    and   cos wx   by solving the differ- 

ential equation 

Then 

2 2 2 
d y = -uj y(dx) 

2 2 2 
d  (sin Wx) = -ü)    sin wx(dx) 

(5.26) 

(5.27) 

and 

d(sin wx) = tu cos Wx dx (5.28) 

Figure 20a is the solution diagram in which both    sin Wx    and    cos Wx 

are available as «hole words and in incremental form.    Figure 20b is an 

alternate diagram which uses one less integrator but generates    w cos wx 

in place of    cos Wx.    Figure 20c is the diagram for built-in post-multi- 

plication where both the desired functions are available and the circuit 

uses only two integrators. 
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dx- 

dx 

cos <"x J w /    I 1      sin wx     / -a> /    | 

a.    Conventional DDA solution 

dx- 

w cos u« j\        sin m     / -w2      /[ 
-w2 sin wx dx      j 

b.    An alternate solution 

dm 

dx- 

C 
cos u> 3~~i— Sin ui Bh 

c.  Solution, using built-in post- 
multiplication 

Fig. 20.  GENERATION OF sin Wx AND cos Wx. 

Example 3. 

2  2 1/2 
Given dx and the constant a, generate the increments d(x +a ) 

2  2 -1/2 2  2 
and d(x +a )   . Figure 21a is the DDA diagram where d £n(x +a ) 

is generated in addition to the desired outputs. Figure 21b illustrates 

the use of built-in multipliers. An alternate diagram (Fig. 21c) has 
2  2 °  2 —1/2 

d in(x +a ) and d (x~ + a )     as outputs. The square root is derived 

from 

dv = f dx 
2y 

(5.29) 
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and the natural logarithm is from 

d in y = - dy (5.30) 

The inverse is derived as in example 1 from 

,2 

*(f) ■ -C-) •> 

dx- 

iWll' 
da- „     /•■*« —yZ 

dU2*«2)"2 

lA^r^A 
Z d In (x2+o2) 

r i|2t92)"/2/ 
rl/2 

a. Conventional DDA solution 

dx 

dx •1/2 
> 

X 
d(f,/2» 

r ■1/2 ^-1« 
f-./2, 

f«(x2+02) 

b.  Solution,using built-in post-multiplication 

dx- 

dx- 
df 

•1/2 -1/2 3> 
din T 

r -1/2 5-i 
f«(x2+o2) 

c. Alternate solution, using built-in post- 
multiplication 

2  2 1/2     2  2 -1/2 2   2 
Fig. 21. GENERATION OF d(x +a )  , d(x +a )   , AND d«n(x + a ), 
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E.  Simultaneous Integration and Post-Multiplication 

As has been shown, some time saving may be gained by including 

post-multiplication in the functional block.  The greatest advantage 

of built-in post-multiplication, however, is that for single-bit (plus 

sign-bit) communication it is possible to perform post-multiplication 

simultaneously with the integration. At the beginning of any Integrat- 

ing cycle the following values are known: AY., Y.  , R  , AX,,  and 

the post-multiplication factor B. Given these known quantities it is 

possible to make some prediction about the outcome of the integrating 

cycle. 

To proceed with the multiplication, we must know the sign and the 

magnitude of 

Y AX + R   - R. 
AZ. = —— ~ - (5.31) 

1 M 

Again using normalization to unity, we know that the magnitude of AZ. 

can only be zero or unity. The sign of AZ.  may be determined as fol- 

lows.  The absolute value of  Y AX must be less than or equal to M: 
i i 

the same is true for R  and R „ . If we assume that R „  has some 
i      i-1 l-l 

positive value M-C and if 

Y. = M - D (5.32) 
l 

then 

R. - AZ = (M - C) + (M - D) (5.33) 

for positive Y.AX ,  where 0 < C < M and 0 < D < M.  Therefore, 

R - AZ. = 2M - (C + D) > 0 (5.34) 
l    i — 

which requires that AZ. > 0.  For negative Y AX ,  we have 

R -AZ = (M - C) - (M - D) = D - C < M (5.35) 
i    l — 
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and 

C > -M 

which requires that AZ =0.  If R    is negative, the results are 

AZ < 0    for negative Y AX (5.36a) 

AZ1 = 0 for positive Y AX 
l i 

(5.36b) 

Hence, the outcome of the integrating cycle can be partially predicted 

by the knowledge of R    only. 

We may proceed, therefore, with the process of post-multiplication 

simultaneously with the integrating cycle. The result of the post-mul- 

tiplication is then stored and used if  |AZ, f = 1 and is discarded oth- 

erwise. The additional time required for post-multiplication is only 

one gate delay and becomes essentially insignificant in comparison to 

the integrating cycle time. The process is valid for both multiplica- 

tion by a constant as well as a variable. 

If we now consider the linear differential equation 

dy + ady + bdy + cydt = F cos ut dt (5.37) 

we car see that four integral outputs require multiplication by constants 

but are also used without the multiplication as inputs to other blocks. 

If the output of a functional block must be multiplied by a constant or 

a function, that multiplication may occur within the block only if the 

integral output (unwultiplied) is not used. Generally, if each func- 

tional block has only one output and if each output is used as the inde- 

pendent-variable increment input to c  second block and not used elsewhere, 

the two functional blocks may be combined into one provided that the de- 

pendent variable of the second functional block is already being generated 

in some other block or that it is a constant.  If we allow the functional 

block to have two outputs (the integral and the post-multiplied integral) 

as was shown in Fig. 18, then the only restriction for simultaneous 
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post-multiplication is that the multiplier must be generated elsewhere 

or must be constant. 

F.  Extemlod Simultaneous Integration and Post-Multiplication 

Theoretically, it is possible to extend the above method to allow 

the multiplication of the integral increment by many functions simulta- 

neously. For example, the three integrators in Fig. 21a which contain 
-1/2    2  2 -1/2 

the dependent variable f    = (x +a )  "    could be included in a 

single functional block; although all dependent variables are identical 

except for one sign reversal, they could be different as long as they 

are available or are constants. 
■ 

Simultaneous post-multiplication is meaningful only in serial-pro- 

cessing machines. Let us consider such a machine with an extended mul- 

tiplication capability which can handle p post-multipliers. Given a 

differential equation and its solution diagram, all integral;* are first 

grouped into two categories. 

(1) The independent-variable inpui to the integral is the 
independent variable of the total equation, or the 
dependent-variable input is a function not generated 
elsewhere. 

(2) The independent-variable input is the output of some 
other integrator, and the dependent variable is con- 
stant or is generated by one of the integrators in 
the first category. 

If there are n integrators in category 1 and m integrators in cate- 

gory 2, the solution would require n + m machine cycles her iteration 

for a traditional serial machine. The solution would require n cycles 

in the machine with extended post-multiplication provided that tho num- 

ber of multipliers assigned to any one of the n integrators in category 

1 does not exceed p. 

Although the additional time required for multiplication in the ex- 

tended unit is "animal, extra time is necessary for assigning and routing 

the additional outputs of each unit; furthermore, if the multipliers are 

variables, some time must be expended to fetch the variables. As pointed 
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out previously, usually all integrals of category 1 require one multi- 

plication, the probability of encountering two or more function multi- 

plications is considerably reduced, and it would be unlikely that all 

the variables would be generated elsewhere. Therefore, while a single 

simultaneous multiplication can reduce the iteration time by 1/2, it is 

not economical to include the extend i post-multiplication (by two or 

more functions) capability. 

G.  Multi-Bit Transfer 

Simultaneous multiplication as described is not possible if a sys- 

tem of multi-bit increment communication is used because the magnitude 

of the output cannot be predicted. Furthermore, it is not even possible 

to predict the sign of the output. Again, the known quantities at the 

beginning of the integral cycle are B, ■•» Y_i» AY. and AX* • Here> 

however, the aligned (after scaling) maximum values of R and Y are 

not equal.  If HL, is the maximum value of Y and M  is the maximum 

value of R,  then 

\<S (5.38) 

where    VL = HL,    is the case of single-bit magnitude communication and 

can here be ignored.     If 

Ri-1 = \ ~ C (5.39) 

and 

\ - MY  " D (5.40) 

then,   for positive    R and positive    Y & , 

R.   - AZ.   =  (MR - C)  +  (My - D) (5.41a) 

R    - AZ    = M    + My -  (C + D) > 0 (5.41b) 
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because 

0 < C < M 
-  - R 

0 < D < M 
(5.42) 

As a result,  AZ. > 0 but the magnitude of AZ.  is unknown. For nega- 

tive Y.AX., 
l l 

R± - AZ = (M - C) - (M - D) (5.43a) 

R. - AZ. 
l    l 

MR- C + D (5.43b) 

But    M    > M ;     therefore, 

MR " MY < ° (5.44) 

D may be, but is not necessarily, greater than C. 

If C > D, 

R. - AZ. < 0  and  AZ, < 0 
x    i i — 

(5.45) 

If C < D,  nothing at all can be said about the sign of R. -AZ ;  it 

may be positive or negative. Similar results are obtained for negative 

R.  .  It is no. possible, therefore, to have simultaneous multiplica- 

tion if multi-bit communication is used. 

Floating-point arithmetic combined with floating-point single-bit 

magnitude communication can be handled identically to fixed-point single- 

bit communication with respect to post-multiplication.  The only other 

requirement is the addition of the integral output exponent to the expo- 

nent of the multiplier.  Both of these exponents are known at the begin- 

ning of the integral cycle since the exponent of AZ must always be 

equal to that of the integrand Y, 

SEL-71-057 50 



H.  Floating-Point Arithmetic 

DDAs conventionally use fixed-point arithmetic, with all quant'1 es 

scaled such that their absolute value does not exceed unity. One excep- 

tion is the BFPDDA (binary floating-point digital differential analyzer) 

designed by J. L. Elshoff and P. T. Hulina (1970), which uses floating- 

point unnormalized values throughout. This requires that at least three 

exponents must be used for each integral:  one for the integrand Y, one 

for the independent variable AX,  and one for the integral increment 

output AZ and its remainder R. The advantage is that problems may 

be entered without normalizavion; the disadvantage is that several ex- 

ponents must be recalculated during every iteration for each integral. 

This is costly in time and hardware.  The following proposed alternative, 

while maintaining the most important features of floating-point arithme- 

tic (such as dynamic scaling and increased computing accuracies due to 

reduced delays), uses a single exponent for all quantities in any one 

integral by employing normalized values of the independent variable. 

The system is best explained by beginning with a conventional fixed- 

point DDA integrator.  The absolute values of the integrand Y and the 

remainder R are less than or equal to unity. The normalized indepen- 

dent-variable input AX and the normalized output AZ are ±1 or 0, 

and the dependent-variable input AY has a magnitude of less than 1. 

Let us now assume that R and Y are divided by 2, which is equivalent 

to a right shift by one bit. To maintain the balance, the AY inputs 

must be divided by 2 rnd :he value of AZ must be multiplied by 2. 

Nothing however changes for the independent-variable input.  If we use 

exponents of 2 to indicate the number of right shifts, then the original 
1 

value of Y = .y.,y2y„ becomes Y = 'Sy^y^yo *2 »  where S is the in- 

serted bit which is equal to the sign-bit of Y. Because AY and R 

are shifted simultaneously and by the same number of bits as Y,  their 

exponents are identiral to the exponent of Y and may be deleted. The 

output AZ is generated in the same way as before, and the required 

multiplication can be achieved by merely appending the exponent of Y. 

Thus only a singlf exponent storage and a single exponent calculation 

are required for the basic integrating cycle. 
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It was previously assumed that the incoming AY increment had 

tJie same exponent as Y. This Is true if we begin with a completely 

scaled problem setup. Once any one of the integrands is shifted, 

however, the assumption no longer holds. Because several integral 

outputs may be summed to constitute a AY,  it is necessary to equal- 

ize all of their exponents to be that of Y which, of course, is 

also true for the BFPDDA.  If the inputs rather than the outputs are 

stored, only one sucli output will arrive at any one time; therefore, 

each increment of AY may be scaled as it arrives and the stored AY 

will always have the proper exponent.  Using the stored input method 

does, however, create one problem. Each output can be used as the 

input to many other blocks and, therefore, is to be stored simultane- 

ously in the AY storage of any or all functional blocks.  This re- 

quires that the exponents of all AY  (which are the exponents of all 

integrands) must be available at the end of each processing cycle. 

This implies that, to save storage space, the exponents of each block 

should be stored in their respective AY storage rather than with 

the integrand. 

I.  Floating Point Post-Multiplication 

A problem arises when the floating-point output of one integral 

is used as the independent variable of another.  If the exponent asso- 

ciated with the independent-variable increment is greater than zero, 

multiple integrating cycles are required; if the exponent is less than 

zero, fractional cycles are necessary. Most systems, including the 

machine here proposed, however, allow only one cycle per iteration. 

Let us first consider floating point post-multiplication. As all 

other quantities in the system, the multiplier is a floating-point 

number such that the absolute value of the mantissa is less than unity. 

The integral increment, however, is a floating-point number with a man- 

tissa of absolute value unity or zero, where the sign of the mantissa 

is predictable, as described for the fixed-point system. Multiplica- 

tion of two floating-point numbers is achieved by multiplying the man- 

tissas, adding the two exponents, and rescaling the result into standard 
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form.  In our case, however, the result does not need to be rescaled 

because the exponent is adjusted after transmission of the result to 

the appropriate storage locations. Multiplication of the integral 

output mantissa may therefore occur simultaneously with the integrat- 

ing cycle and, because both exponents are known at the beginning of the 

integrating cycle, post-multiplication in a floating-point system nay 

be simultaneous. 

As shown in Section D, whenever an integral output is used as the 

independent-variable input, the resultant function can be considered as 

a post-multiplication.  In these cases, the integrating cycle is iden- 

tical to the one described above except that the output exponent is tne 

sum of the dependent- and independent-variable increment input exponents. 

No storage is necessary for the independent-variable input exponent be- 

cause it is retransmitted for every iteration. 
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Chapter VI 

THE MULTI-MODULE SYSTEM 

A.  Processing Methods 

Assuming that we have a differential equation requiring m separate 

integral calculations per iteration, we can visualize the equation as m 

points in a two-dimensional space, each representing one integral func- 

tion. To solve the equation, the m points must be interconnected ac- 

cording to the solution diagram. 

Now, any DDA machine can be represented pictorially as a matrix of 

n points, each representing one integrator and each having two inputs 

and one output.  If we assume full parallel operation, where all n 

points have their own processor, then, after each processing cycle, up 
2 

to n signals must be routed to a maximum of n +2n destination points. 

This is based on the assumption that each integral output can be used as 

the independent variable of two other integrals and as a component of the 

dependent-variable input of all integrals including itself. This is not 

a practical scheme for any method other than patchboard programming. The 

complete parallel machine, therefore, is not suitable under the conditions 

described in Chapter III. 

Let us now examine tae other extreme and assume that a single proces- 

sor is available. This processor then operates ?i each integral in some 

predetermined order and, after each processing cycle, one signal must be 

routed to as many as n+2 points. The required interconnection becomes 

simple enough to be handled automatically with a reasonable amount of 

hardware. As n becomes large, however, the iteration and solution 

times increase proportionally to n. This does not satisfy the condi- 

tion of high solution speed discussed in Chapter II and, therefore, is 

not suitable. 

Between these two extremes is the alternate method of serial-paral- 

lel processing.  If we consider the matrix of n points to be divided 

into ifl smaller submatrices of 2    points each and if we have m pro- 

c3ssors (one for each £    point matrix), then we have serial processing 

within each submatrix but we may process all submatrices in parallel with 

each other. The iteration time woi-ld increase as the number of required 
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integrals increases but could not exceed &     integrating cycles. Within 

each submatrix, one signal must be capable of being routed to as many as 

(Ü+2)  inputs after each integrating cycle.  The serial-parallel process- 

ing approach, therefore, simplifies the interconnection problem within 

each modulo by limiting the number of signals to be routed at any one 

time to one signal and by limiting the number of destinations to which 

this signal is to be routed to  (i+2).  This approach, however, does 

introduce the problem of interconnection between matrices. 

B.  Inter-Module Communication Methods 

Here again the practical solution is a compromise between the two 

extremes of total interconnectibility, where every point of every matrix 

can be connected to all other points of all other matrices £tnd where no 

interconnection exists between the matrices. The first becomes impracti- 

cal because of the very large expense in hardware and time. The second 

extreme is unacceptable because it breaks the system into separate ma- 

chines that cannot communicate with each other and therefore restricts 

the complexity of problems that can be solved to l\   "complexity" refers 

here to the number of integrals required for the equation solution, which 

depends jointly o.i the order and degree of the equation.  The alternative 

is to introduce restrictions and limitations that will simplify the hard- 

ware requirements and still allow a reasonable rnd sufficient level of 

interconnections between matrices. Two possible basic approaches are 

"vertical communication" and "horizontal communication." 

1.  Vertical-Communication Approach 

For vertical communication, all matrices are stacked such that, 

if all points in each matrix are labeled 1 through £, each point i (1< 

i < I)    in every matrix is directly below and above the points i in the 

vertically adjacent matrices. Assuming total communication within each 

plane, we now allow each point i to communicate with the points i di- 

rectly above and below. This communication scheme in itself is too re- 

strictive to be useful: however, by using communication channeling, any 

point can communicate with any other point in any plane.  "Communication 
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channeling" here means the duplication at some point in the plane of a 

function being generated at another point such that the output can be 

communicated to the required destination point. 

Figure 22 is a» example of communication channeling in the 

vertical-communication scheme. For point A to communicate with point 

B,  we require the duplication of A at A2,  It is important to note 

that this communication channel is unidirectional. Vertical communica- 

tion may be advantageous for some problems (such as weather-prediction 

calculations) but, in most cases, will lead to an excessive amount of 

function duplications and hardware. 

Fig. 22.  CHANNEL- 
ING IN VERTICAL 
COMMUNICATION. 

Z.      Horizontal-Communication Approach 

For horizontal communication, all matrices are arranged in a 

row. Each matrix contains two sets of points (set A and set B) such 

that each point in set A (of matrix n) can communicate with every 

point in set B contained in the matrix (n~l),  and all points in set 

B of matrix n can communicate with every point in set A of matrix 

(n + 1),  as indicated in Fig. 23. The necessary hardware requirements 

for this inter-kuatrix communication scheme depends directly on the num- 

ber of points contained in sets A and B. As the size of the sets A 

and B is reduced, however, there will be points within each matrix 

which are not contained in either set and, therefore, cannot communi- 

cate directly with points in other matrices. Communication channeling 
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Fig. 23.  HORIZONTAL COMMUNICATION. 

is required in any case to allow all points to communicate with each 

other unless sets A and B in each matrix are identical and all points 

within the matrices are contained in the sets. Figure 24 is an example 

of the upe of channeling to permit communication between points C and 

D in two adjacent matrices. Again there is a duplication at point C2 

of the function generated at C. 

Fig. 24.  CHANNELING IN HORIZONTAL 
COMMUNICATION. 
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Chapter VII 

THE MODULE 

A.  Processing Methods 

The proposed machine will be a modular system. Each module is to 

be complete and capable of operating independently or in conjunction 

with other modules. Each must contain all the necessary memory for 

program and data storage for some fixed number of different Integrals, 

as well as the required arithmetic capability. The module must be au- 

tomatically programmable, and it must be capable of repetitive opera- 

tion and solution reversal (if the function is reversible). 

The above conditions influence the selection of the construction 

parameters. The two most important of these are the method of process- 

ing (serial or parallel) and the method of intra-module increment com- 

munication. 

The methods of parallel and serial processing have been described 

in the previous chapter in the context of interconnectibility.  It was 

shown to be advantageous to use parallel processing between the modules 

but to use serial processing within each module. The principal disad- 

vantage of serial processing is that the iteration time increases as 

the complexity of the problem increases; the principal disadvantage of 

parallel processing is that the difficulty of integrator interconnec- 

tion prevents any practical automatic programming. The primary advan- 

tages of serial processing within the module are economy of hardware 

and interconnectibility. The serial-processing module requires only a 

single arithmetic processor. The number cf integrals that can be solved 

within the module is limited only by the availability of memory space 

for program and data storage. Because only one integral is processed 

at a time, a single set of inputs and outputs must be routed between 

the integrating cycles. This, in contrast to parallel processing, al- 

lows for completely automatic programming. 
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B.   Intra-Module Communication Methods 

The DDA program is a digital model of the system under study. With 

few exceptions, therefore, the programs are closed-loop systems with all 

functions generated internally, and all inputs to the integrators are 

derived from the outputs of other integrators. The exceptions, of course, 

are those instances when the machine is used for real-time applications; 

in these cases, one or more externally generated functions are entered 

as integrator inputs. To communicate the various outputs to the desired 

inputs, it is necessary to employ at least temporary storage for the sig- 

nals. We may choose to store the outputs and then, at the beginning of 

each integrating cycle, to fetch the various required outputs which may 

combine to form the dependent-variable input and, unless machine time is 

used, to fetch the output that is used as the independent-variable input. 

Alternately, we may choose to transmit each output as it becomes avail- 

able ant', continuously update and store all the input functions. Th; -.e 

two methods are called "output storage" and "input storage," respectively. 

1.  Function Output Storage 

Function output storage requires a minimum of memory. Each 

functional block has two inputs; one is the dependent-variable input and 

is generated by combining several outputs and therefore requires full- 

word storage in contrast to the single-bit plus sign-bit that is neces- 

sary for the storage of the output. At the beginning of each integrating 

cycle, assuming that all outputs are stored, one output is fetched to be 

used as the independent-variable input unless the machine time is used. 

All outputs necessary for the dependent-variable input are then fetched 

and the input is formed in some arithmetic unit. Although its operation 

is always a summing of the various outputs, the arithmetic unit must con- 

sist of a network of adders such that all outputs can be summed simulta- 

neously, or a considerable amount of time must be allocated to generate 

this input. Assuming simultaneous summing, all the required outputs 

must be available simultaneously. This can be achieved by using a se- 

lection matrix, but again this requires a considerable amount of hard- 

ware. The program storage necessary for the selection codes is n-(n+ 

log n) bits, where n is the number of functional blocks in the module. 
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2.  Function Input Storage 

Function input storage requires memory space for two inputs 

for each functional block; as stated above, one of these is a full word. 

At the beginning of the integrating cycle, both inputs are immediately 

available; at the conclusion of the cycle, the output is routed to the 

appropriate independent-variable &torage locations. The output also is 

routed to be used to update all appropriate dependent-variable inputs. 

One method is to employ a separate counter for each of these inputs; the 

output then updates the counters by either adding or subtracting one unit 

increment. The contents of the counters therefore are the dependent- 

variable inputs and are always current. An alternative method would be 

to employ a single adder and to fetch and update all selected inputs se- 

quentially. Although the first method requires considerably more hard- 

ware, it is preferred because the second method requires too much time. 

Using counters simplifies the selection network by allowing count-enable 

lines to be directly tied to the proper section of the program word.  In 

this case, the program storage necessary for the selection codes is n«(n+ 

2 log n) bits, where n again is the number of functional blocks within 

the module. 

Input storage, unlike output storage, allows easy expansion of 

the module to a larger number of functional blocks with the increase In 

hardware being directly proportional to the number of added blocks. 

C.  Memory Organization 

If we assume that for each integral  (and integral remainder word 

stored) we hr.ve one corresponding integrand word,   then,   because each 

cycle occurs in the same time interval during each iteration,   it is 

possible to organize the data-memory block as a push-down stack.    This 

considerably reduces the memory necessary for program storage by elimi- 

nating the address portion from each program word.    This trade-off,   how- 

ever,  may lead to duplication and multiple s+' of the same identical 

integrand word. 

A similar situation exists for the storage of post-muiiipl^cUicn 

factors,   but we have one additional consideration.    Post-multiplication 
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by a constant B,  as described earlier, is unlikely to result in much 

duplication if the push-down stack organization is used.  If, however, 

we maintain random-access organization for both the integrands and the 

post-multiplication factors, it is possible to expand the post-multipli- 

cation concept to include function multiplication. 

If we assume a module size which allows the generation of m inte- 

grals, each with a different dependent and independent variable, then 

that module can solve a linear constant-coefficient differential equa- 

tion of order m.  In the case where random-access organization is main- 

tained for all data, the coefficients may be varying functions provided 

that they have already been generated in the course of the equation solu- 

tion.  If any of the functions must be generated separately or if the 

order of the equation exceeds m,  two or more modules can be cascaded 

for horizontal communication or they may be stacked for vertical commu- 

nication to provide the increased capacity necessary for the solution. 

The number of integrals required to solve nonlinear differential equa- 

tions depends on *»»« order as well as the degree of nonlinearity, here 

jointly referred t"> as the complexity of the equation. 
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Chapter VIII 

THE PROPOSED MACHINE 

A.      Operating Procedure 

The system here proposed consists of one or more identical modules 

which are self-contained and may operate jointly on the same problem or 

individually on separate problems, Figure 25 is a block diagram of one 

module. 

DATA 
MEM. I 

1 
OATA 
MEM.H 

ARITHMETIC 
UNIT 

I/O CONTROL 
ANO PROGRAM 

SEQUENCING 
LOGIC 

1 

CONTROL 
SIGNALS OATA 

MEM.JD 

0Hk\ 
DATA 

MEM. ff 

PROGRAM 
MEMORY 

v/n i nvkLE n 

Fig.   25.     BLOCK DIAGRAM OF A MODULE. 

The modules follow a cyclic operating procedure.    During each iter- 

ation,   all integrals are processed sequentially for one integ^l incre- 

ment.    The order of processing is determined by the program and is repeated 
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for each iteration.  The processing of a single integral increment is 

called a cycle and, in this system, a cycle consists essentially of the 

following operations: 

(1) fetch the integrand increments 

(2) pre-multiplication 

(3) incrementation of the integrand 

(4) fetch the independent variable increment 

(5) generation of the integral increment and the new integral 
remainder 

(6) post-multiplication 

(7) storage of the integral increment as dependent- and inde- 
pendent-variable increments, as required 

Figure 26 is a conceptual flow chart of the module operation. The 

actual time sequence of operations does not always follow this pattern 

because of the considerable amount of parallelism and overlapping of 

functions. Post-multiplication, for example, is initiated at the same 

time as pre-multiplication and is completed before the integral incre- 

ment AZ  is available. The result of post-multiplication then is held 

until the AZ generation is completed, whereupon we either store or 

discard the result depending on the magnitude of AZ. 

B.  Communication within the Module 

ik The proposed machine will employ input variable storage. If AW 

is the i   increment output of the k   integral function, then in 

terms of problem variables each integral increment AW.,  can be useu 

as tne dependent-variable increment AV. , where j = i + l if k > i 

and j = i if k < £,    for any or all integrands in the module includ- 

ing the case where k = g,. 

The increments AW   can also be used as the independent-variable 
ik 

increment AX.  for any two integrals (again j = i + l if k > j> and 

j = i if k < i). Each dependent-variable increment AV .  may be a 
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I 
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Fig. 26.  FLOW CHART FOR MODULE OPERATION. 

single AW.  or may be formed by the summation of any or all AW . 

Within each module, therefore, we allow total communication for the 

dependent variable. The limitations on the independent variables are 

not as severe as may appear.  If some integral increment must be used 

as the independent-variable increment of more than two integral func- 

tions, one simply has to generate one integral twice.  In addition, the 
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restriction can be relaxed or even be eliminated although this would 

probably not be desirable.  The dependent-variable increments are up- 

dated for all integrals during every cycle, and the same is true for 

the independent variable. Thus all inputs to any integral are ready 

and immediately available at the initiation of any cycle. 

The memory organization is such that random access is maintained 

for both the integrands and post-multiplication factors.  The machine, 

therefore, is capable of simultaneous integration and multiplication 

by either a constant or a variable. 

C.  Communication between Modules 

If a multi-module system is required, inter-module communication 

is achieved by the "horizontal communication" method. All uodules are 

processed in parallel. 

The required hardware connections between cascaded modules consist 

of two sets of increment-corn lunication links between any two modules. 

These links are unidirectional. 

The communication between modules, while not as general and com- 

plete as within each module, allows for any or all elements of the set 

of the four integral increments AW. (i = m - 3, m - 2, m -1, m) of each 

module n to be used as the dependent-variable increments for any or 

all AV (i = 1, 2, 3, 4) or as components thereof, of each module n + 1. 

Also, any or all elements of the set of the four integral increments 

AW. (i = 1, 2, 3, 4) of each module n can be used as the dependent- 

variable increments for any or all AV. (i = m - 3, m -■ 2, m - 1, m) or 

as components thereof, of each module n-1. 

A reasonable and convenient size for m is 16 which means that a 

single module is capable of solving equations up to the 16th orde*\ pro- 

vided that the coefficients are already generated in the problem solution 

or that t.iey are constants. For many applications this should be more 

than sufficient.  If a greater capability is iesired, one has only to 

cascade additional modules.  In Fig. 27, each integral is represented 

as a point in a 4x4 matrix and each square plane of 16  points repre- 

sents a module. Any point enclosed by a solid line has total communica- 

tion with all other points within that enclosure (within the module), 
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Fig. 27.  MATRIX SHOWING COMMUNICATION BETWEEN MODULES. 

and any point enclosed by a broken line has total communication with 

all other points within the broken-line enclosure (external to the 

module). 

Each enclosure then is a domain of total communication for each 

point within it, and each point belongs to at least one but not more 

than two domains. Two points which are not contained in the same do- 

main cannot communicate directly.  Indirect communication is achieved 

by channeling.  (For example, points A and D in Fig. 27 communicate 

via points B and C,  and points A and F communicate via points 

B, C,  and E.) Other communication schemes are possible and some mod- 

ifications of the above are being considered; however, any method must 

by necessity use some kind of channeling to keep the basic organization 

simple. 

If a particular integral output is to be used in an adjacent module, 

the output increment is transmitted to that module immediately after gen- 

eration and is held there temporarily until the next integrating cycle 

has been initiated. During each integrating cycle, a time slot is re- 

served to store the external inputs received during the previous cycle. 

Because only one input can arrive during any one cycle, the routing of 

that signal is simplified considerably; furthermore, the interleaving 

of internal and external signal storage enables us to store the address 

of the signal in the destination module rather than in the source module. 
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This saves both hardware and time because the address does not need to 

be transmitted along with the signal between modules. 

D. External Function Input 

To use the machine for real-time control, it is necessary to pro- 

vide for real-time function inputs. The communication links available 

to cascade modules to each other, if not required to connect to another 

module, can be used to enter external functions. A module therefore is 

capable of accepting up to eight external function inputs. As modules 

are cascaded into larger systems, only the modules at either end of the 

string can accept four external inputs each in this way. These external 

inputs also are circuited to be used for specific integrals (cycle num- 

bers) within the modules. Additionally required external functions must 

use separate links going to those integrals only, which in Fig. 27 are 

represented as points belonging to a single domain. 

E. Iteration Time 

Generally, as the complexity or the order of the equations increases, 

the solution time increases proportionally, which is true in most numeri- 

cal-solution methods. The solution time per iteration required for the 

DIC increases linearly with increasing problem complexity until it equals 

16 cycle times (for m = 16);  thereafter, the iteration time stays con- 

stant as additional integrations are performed simultaneously in adjacent 

modules. Thus the solution time per iteration for the DIC cannot exceed 

the time required to process 16 integrations, regardless of the problem 

size. 

Although once established, the order of processing remains the same 

for every iteration; that order can be selected during program setup to 

allow easy communication to other modules without much fur^tion duplica- 

tion or to reduce the iteration time by distributing one problem over two 

or more modules.  In examples 1 and 2 in Chapter II, a total of six inte- 

gral functions are required each if post-multiplication is not used; there- 

fore, the iteration time is equal to six cycle times. We could, however, 
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distribute the integral functions over the two modules n and n + 1 

such that each module contains three function?. The iteration time in 

this case would be equal to three cycle times or one-half of the time 

required previously. 

F.  The Processor 

The processor of the proposed machine is described by the equations 

in chapter V, which were written for rectangular integration. However, 

the processor contains one additional element which allows a choice of 

several integrating algorithms. Equation (5.21), 

Ri = Ri-i + YA - **i 

determires the algorithm. This equation can be rewritten in more gen- 

eral form as 

A    = R   + IY   + (K + 1) AYi 1 AJ^ - &t (8.1a) 

Rt = R   + YiAXi + K AY1AXjL - &i (8.1b) 

where K is a constant which determines the algorithm being used. 

Four simple and very easy-to-implement algorithms are obtained by 

selecting K to be 0, +1/2, -1/2, or -1.  If K = 0,  we have the pre- 

vious case of rectangular integration.  Setting K = +1/2 results in 

the modified trapezoidal integration rule which is an extrapolating al- 

gorithm.  In this case, 

R = B, j + YjLAXi + | AYiAX1 - &± (8.2a) 

or 

\ - V! + (vi+1 AYi) *i - **i (8-2b) 
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The interpolating trapezoidal algorithm requires that K = -1/2.  Then, 

R. = R. , + Y.AX. - - AY.AX. - AZ. (8.3) 
l   1-1   l  l  2  l  l    l 

The fourth algorithm allows the proper multiplication of two variables 

if K is set to -1 in one of the cycles and to 0 for the other.  Sum- 

ming the two outputs and ignoring the remainders result in 

A(X.Y.) = Y. iAX. + X.AY. (8.4a) 
l l    l-l l   li 

or 

A(X.Y.) = Y.AX. + X. ,AY. (8.4b) 
li    li   l-l  l 

Both of these equations represent the exact product.  It should be noted 

that the exact product also can be achieved by using the interpolating 

trapezoidal algorithm (K = -1/2) for both functions. 

To generate the new remainder R and the output AZ,  we must 

first update the integrand Y. This time slot can be used to perform 

the addition of K AY.AX.  to the old remainder. Each integrating cycle 

then has the following three phases. 

Phase 1:  Pre-multiplication 

AY. = A AV. (8.5) 

Phase 2: Update the integrand and modify the remainder, 
depending on the choice of algorithm 

Y4 - Y   + AY4 (8.6) 

R* = Ri_1 + K AYiAXi (8.7) 

Phase 3: Generate the integral output and new remainder, 
and simultaneous post-multiplication 
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Ri = Ri + YiAxi " ^i (8.8) 

R2± = R2i_1 + B A24 - AWt (8.9) 

During the processing, only phase 1 and Eq. (8.6) depend on the value 

of AX;  therefore, whenever AX = 0,  Eq. (8.7) and all of phase 3 do 

not effect the outcome of the calculation and therefore may be deleted. 

Normally, this case occurs quite frequently unless AX is supplied by 

the machine time. Hence, to increase the solution speed further, the 

machine will operate semi-asynchronously. 

Although all operations occur in the same time slot during each 

cycle, execution of Eq. (8.7) during phase 2 is prevented and the cycle 

is terminated after this phase if AX = 0,  provided that the equation 

to be solved is contained in a single module and that no real-time ex- 

ternal signals are used.  In real-time problems and if the problem is 

distributed over several modules, the processing operation must be syn- 

chronous . 

G.  Programming and Interface 

Since the system is completely modular, the programming is identi- 

cal for each module; therefore, only one module will be considered here. 

The module may be programmed automatically from a general-purpose compu- 

ter containing the appropriate software-package or it may be programmed 

manually.  In either case, all programming steps are identical and must 

be entered in the same order. 

For the simplified machine which allows simultaneous post-multipli- 

cation by a constant but not by a variable (this eliminates the indirect- 

addressing step prior to post-multiplication), the program contains the 

following information: 

(1) number of integral cycles 

(2) integral address (cycle no.) 

(3) initial condition of the integer (Y) 
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(4) initial condition of first remainder (R) 

(5) ore-multiplication factor (A) 

(6) post-multiplication factor  (+/-.PY) 

(7) initial condition of second remainder (PR) 

(8) positive or negative independent-variable input, either 
machine time or transmitted signal  (+/-.T) 

(9) addresses of dependent-variable inputs to which output 
is to go (internal to module)  (DYA) 

(10) addresses of independent-variable inputs to which out- 
put is to go (internal)  (DX*) 

(11) is integral increment to be used for adjacent module 
(I/E) 

(12) is integral increment used as output (0) 

(13) addresses of d'^'iendent variable to which external input 
is to go (DYAE) 

Steps 2 through 13 are repeated for each integral cycle. Entering the 

options of solution range (number of iteration cycles), repetitive oper- 

ation, or solution reversal completes the program. 

All this information is entered in binary form and is automatically 

cycled to the appropriate memory-storage locations. As an example, let 

us consider Eq. (2.15) in Chapter II: 

•2 yy + y +1=0 

or 

dy = _' dy _ dx 
y  y 

The solution diagram is repeated for convenience in Fig. 28. Assuming 

the module is operating in conjunction with a general-purpose computer 

containing the translator, the following input statements are required 

to generate the DIC program: 
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; 

INDV X 

DEPV Y 

DY1 = -(Y1)(DY/Y) - (DX/Y) 

FIN 

NUMBER OF EQUATIONS = 1 

dx- 

dy 

dx- 

dx- 

IJH 

Mi 

—\     £l 3^- 

l/y ®) 
d(t/y) 

l/y 
© y 

.    ® 
-C42 

x^ 

'•^♦(lf)2^-o 

Fig. 28.  SOLUTION DIAGRAM FOR yy + y2 + 1 = 0. 
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The first two statements are the declarations of the independent and 

dependent variables, respectively. Following the declarations is a 

list of all coupled equations to be solved.  The form of the equation 

statement is very similar to that of Eq. (8.10), but the dots over the 

variables are replaced by a numeral to signify the order of the deriva- 

tives  (dy becomes DY2). FIN indicates the end of the equation list. 

If other equations (uncoupled Irom  the previous set) are to be solved 

simultaneously, the FIN statement is replaced by NEXT and is followed 

by the new declarations. Except for the operating options, the complete 

DIC program for Eq. (8.10) is shown in Table 6. Again the assumption is 

that, at most, 16 bits are to be used and all initial conditions are nor- 

malized . 

Table 6 

DIC PROGRAM FOR dy = -y 
dy  dx 

y  y 

Number of cycles = 6,  and selection codes are always (0/1). 

Cycle 
(No.) 

Y R A +/-, py PR +/-.T DYA DXA I/E 0 DYAE 

1 1.00 0.50 4 0,1.00 0.50 0,1 6 2 0 0 — 

2 1.00 0.50 4 0,1.00 0.50 0,0 — 3,5 0 0 — 

3 1.00 0,50 4 1,1.00 0.50 0,0 2,3,4 ~ 0 0 — 

4 0.25 0.50 1 1,1.00 0.50 0,1 1,5 — 0 0 -- 

5 1.00 0.50 4 1,1.00 0.50 0,0 1,5 — 0 0 — 

6 0.25 0.50 1 0,1.00 0.50 0,1 — — 0 1 ~ 

The combined GPC-DIC system requires an interface to channel commu- 

nications of input, output, and commands, and to match the data rates of 

the two machines. To the GPC the interface will appear as an I/O chan- 

nel and the DIC as some I/O device. Therefore, once the translator has 

set up the program and it has been transmitted to the DIC, the GPC is 

free to execute other programs. An additional function of the interface 

is to act as an exit port for the immediate printing or display of DIC 

problem solutions. Figure 29 is a block diagram of the combined system. 
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GPC 

CONTROL 

INTERFACE 

ADDRESS 

OIC 

OATA 
DATA 

ADORESS 

.STATUS 

DATA 

CONTROL   L 

DATA 
TO DISPLAY EXTERNAL FUNCTIONS 

Fig. 29.  BLOCK DIAGRAM OF GPC-DIC COMBINED SYSTEM. 

Although the DIC generates data at an extremely high rate, it is not 

necessary to use a DMA (direct memory access) channel since typically 

the solutions are read out only every hundred or even thousand itera- 

tions. The interface will contain a reasonably large temporary storage 

(512 words) to allow data transfer from the DIC to the GPC via a multi- 

bit channel under program control, while at the same time allowing im- 

mediate display on a CRT or some other device. 

H.  Computer Simulation 

The basic module including the multiplication functions has been 

simulated on the Stanford Computation Center IBM System 360 model 67. 

The program was written in FORTRAN, and Fig. 30 is a listing of the 

simulation. The input data are in essentially the same order and form 

as they would be for the actual hardware machine, but the initial con- 

ditions and some parameters are presented in decimal form. The program 

execution follows exactly the steps and phases (Section F) of the pro- 

posed machine with the exception that the calculations of R2  (the sec- 

ond remainder) and the final output increment are separated to save com- 

puting time. The simulation uses the two-loop number system. 

After program read-in and verification, all variables and parameters 

are initialized. The problem solution begins with the first iteration 
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I NTEGER  A, B, C, DY, ABY,M, N, OX, SR, TF.2, ABR, DZ1, I, K, L,H, ABPR, CNT, COUNT, 
Cl TER   CYC  F 

INTEGER  Y(lb),RU6),PY(16),PR(lfc),un(16),UDA(16,16),XC(16,3),PMA(l 
C6,2),XAU6,2),DZY(lb) 

REAL  X, CORRY,D,NOPMX,XMAX 
DIMENSION  YY(16),MXC16),N0RMY(lb) 

i»00O  FORMATCl','NO DATA FOUND  FOR   INTEGRATOR  #' ,13/,.'   INITIAL CONDITIO 
CNS ARE ASSIGNED  TO   INTEGRATORS  1   THROUGH  ',13///) 

UOIO  FORMATC   ',3X,lb,7X,F7.5,5X,6(F7.5,3X)) 
i»020  FORMATC   ',//,'*W A R  N  I   N G  •••*',//,'Y-VALUE OF   INTEGRATOR  #',l 

C3,'EXCEEDED   THE  MAXIMUM  VALUE  OF',Ib/,'DURING   ITERATION  #',I6/,*TH 
CE  VALUE  OF   Y WAS   ♦,-l,l6/,'Y   IS RESET  TO', 16/,6X, ' ***•*• ) 

«♦030  FORMATC   ', ' I TERATI ON' , 10X, *X', 5X, 6(«, ' Y( ', I 2, ' )', IX)) 
l»0l»0  FORMATC   ',3X, *IMTE-',2X,'SUM-DY   INPUT  IS\ 5X, 'DZ-POST- ', 8X, 'DZ  GO 

CES   TO  DY',8X,'DZ  GOES  TO  DX1/,'   ',2X,'GRATOR',3X,'SHIFTED  UP BY',3 
CX^MULTIPLICATION'.SX.'OF   IINTEGRATORS', 7X,'  OF   INTEGRATORS',/) 

«»050  FORMATC   ' , 3X, I 3, 8X, 14, 10X,F10. 7, 6X, 16< I 2, ', ' )) 
itObO  F0RMATC*',68X,I3,',',I3) 

COM       READ   IH  PROGRAM,   INITIAL  CONDITIONS  AND   PARAMETERS 
RFAD( 5, *)   I TER, XMAX, NORMX, CYC, M, N, COUNT 
CNT»COUNT-l 
DO  10   1-1,16 
UD(I)«U 

10  READ(5,*,END-20,ERR«20)  MX(I ),Y(I ), R( I ), PY( I ), PR( I ), (UDA( I , J), J-l, 
C1G),(PMA(I,K),K=1,2),UA(I,K),K«1,2),(XC(I,L),L-1,3) 

20 WRITE(6,1*000)1,1-1 
WRITE<6,4040) 

COM       CLEAR  AND   INITIALIZE  DY-STORAGE 
COM       PRINT  CONNECTION  TABLE  AND   PRE-  AND   POST-MULTIPLICATION 
COM       FACTORS  FOR   PROGRAM  VERIFICATION. 

DO  i»0   l»l,CYC 
NORMYCI )»M/MX(I ) 
K»l 
DO   30  J=l,16 
IF(UDA(l,J).NE.l)  GO  TO   30 
DZY(K)-J 
K-K+l 

30  DZY(K)-0 
WRITE(6,4050)I,PMA(I,1),PY(I)/(N+0.),(DZY(J),J»1,K) 

1*0  WRITE(6,4060)(XA<I,J),J«=1,2) 
WRITE(6,I»030)(I,I«1,CYC) 

COM       START   ITERATIONS 
DO  120  H»l,ITER 

COM       NORMALIZE  X  AND   Y  FOR  OUTPUT 
DO  SO   1=1,CYC 

50  YY(I)-Y(I)/NORMYCI) 
X-(H-1)/N0RMX 
IF(X.GT.XMAX)   GO   TO   120 

COM       OUTPUT  Y   IF   CALLED  FOR 
COM       DELETING  THE  FOLLOWING  STATEMENT  CAUSES 
COM      ALL Y'S   (l-b)TO  BE   PRINTED   :   I F( PMA( 1, 2KEQ.O)   GO  TO  60 

CNT-CNT+1 
IFCCNT.LT.COUNT)   GO   TO  60 
WRITE(b,4010)H,X, (YY(I ), 1*1, CYC) 
CNT-0 

60  CONTINUE 
COM      START CYCLE 

DO 110   l«l,CYC 
COM       FETCH DY,   PRE-MULTIPLY,   CLEAR  DY-STORAGE 

DZ»0 
DZ1»0 
DY-UD'I)*2*«PMA(I,1) 
UDCf)'0 

COM       UPDATE  Y     AND  CHECK  FOR  Y-OVERFLOW 
Y(I)-Y(I)*DY 
ABY-IABSCY(I)) 
IF(ABY.LE.M)   GO   TO   70 
Y(I)-ISIGN(ABY-M,Y(D) 
WRITE(6,l»020)l,MfH,ABY,Y(l) 

70  CONTINUE 

Fig.   30.     FORTRAN SIMULATION PROGRAM OF DIC MODULE. 
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COM 

COM 
COM 
COM 

COM 

COM 
COM 

COM 

80 
COM 

90 
COM 

100 
110 
120 

COM 
COM 
COM 
COM 
COM 
COM 

DETERMINE SOURCE OF OX 
DX-XC(I,2) 
IF(DX.EQ.O)  DX-XC(I,1) 
XC(!,l)-0 
A-l 
PREDICT  INTEGRL.   INCREMENT OUTCOME 
AND DO  POS1-MULTI PLICATION,   STORE  POST-MULT.  OUTPUT IN 
TEMPORARY STORAGE 
SR-ISIGN(A,R(I)) 
TR2"PR(I)*SR«PY(I) 
CHECK VALUE OF DX, TERMINATE CYCLE IF DX-0 
IFCDX.EQ.O) GO TO 110 
COMPUTE REMAIMDEP 1   (R)  AND   INTGRL.  OUTPUT    DZ1 
DISCARD REMAINDER 2 AND  POST-MULTI PL.  OUTPUT  IF DZ1-0 
R(I)-R(I)*Y(I)*DX 
ABR»IAB3(R(I)) 
IF(ABR.LE.M)  CO  TO  80 
R(I)-ISIGN<ABR-M,R(I)) 
DZ1-SR 
STORE REMAINDER 2,   ASSIGN FINAL OUTPUT  INCREMENT 
PRCD-TR2 
ABPR-IABSUR2) 
IF(ABPR.LE.N)  GO TO  80 
PR(I)-ISIGN(A8PR-N,TR2) 
DZ»ISIGN(A,PR(I)) 
CONTINUE 
ROUTE OUTPUT DZ TO DESIRED DY  INPUT STORAGE  LOCATIONS 
DO  90  K-1,CYC 
C«UDA(I,K) 
IF(C.EQ.O)  GO TO 90 
UD(K)-UD(K)*OZ 
CONTINUE 
ROUTE OUTPUT DZ  TO DESIRED DX   INPUT STORAGE  LOCATIONS 
DO  100  K-1,2 
D»XA(I,K) 
IF(D.EQ.O)   GO  TO 100 

XC(D,1)-0Z 
CONTINUE 
CONTINUE 
CONTINUE 
THE FIRST DATA CARD CONTAINS  (SEPERATED BY SPACE OR COMMA)   : 
ITER       XMAX    NORMX CYC    M    N    COUNT 
THE NEXT DATA CARD MUST BE REPEATED FOR EACH CYCLE    USED 
MX(I)       Yd)     R(l)     PY(I)   PR(I)       UDA(,)     PMAC     )       XA(,)     XC(,) 
Y,R,PY, PR ARE  INTEGER   INITIAL CONDITIONS 
MX  IS A REAL,     THE NEAREST POWER OF  2 SUCH THAT (MX.GE.Y-MAX) 
RETURN 
END 

$DATA 
$STOP 

Fig.   30.     CONTINUED. 

(Loop 120).    After each iteration,   those integrands that are desired as 

output are printed provided that the iteration number is a multiple of 

COUNT  (the specified output  interval).     Loop 110 contains all calcula- 

tions for each cycle.    The computation follows the steps  in Section A, 

again with the exception that part of the post-multiplication operation 

occurs before the generation of the integral increment and remainder 

(step 5).     The program has been executed with various  input data sets, 

and  it performed as predicted with no instabilities. 

77 SEL-71-057 



«WMBMPtl. .>„.*-! 

Chapter IX 

CONCLUSION 

The goal of this work has been the development of a machine struc- 

ture that would be useful for the numerical solution of differential 

equations.  Of the various requirements spelled ou. in Chapter III, the 

most important consideration has been to achieve a system which would 

be easy to use and which eventually may lead to an integrated GPC-DIC 

system, such that the DIC would constitute simply an addition to the 

GPC processor.  The proposed machine has been simulated on a general- 

purpose computer and the program performed satisfactorily. 

A modular computing structure has been introduced, which employs 

a serial-parallel processing approach. This approach maintains some 

of the simplicity of communications in serial machines while, at the 

same time, setting an upper limit on the iteration time regardless of 

the complexity or size of the problems to be solved. The solution 

speed of problems that do not require all available modules may be 

increased by dist_Jbuting the functions evenly over all modules. 

A differential equation is considered tc be represented by a num- 

ber of points in a matrix, where each point designates some integral 

function whose output must be communicated to other points. This rep- 

resentation leads to two basic methods of inter-module communication: 

"vertical" and "horizontal" communication. Each of these methods has 

its advantages; however, because horizontal communication is more ap- 

propriate for a wider variety of problems, it has been chosen for the 

proposed machine. 

To eliminate instabilities and oscillations that are inherent in 

circular number systems and can occur whenever the value is at or near 

the maximum or minimum, a two-loop number system was introduced. The 

system has separate positive and negative loops returning to 0 and -1, 

respectively.  Extending the loops such that they overlap but are not 

identical resul • in a number system with a hysteresis. 

The propose . machine contains within its processor both pre- and 

post-multiplicat jn of the integral increments.  It has been shown 

that, for the given number system, the outcome of the integrating 
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cycle can be predicted sufficiently to allow post-multiplication to 

occur simultaneously with integration.  The integral output may be 

multiplied by either a constant or a variable. Theoretically, the 

concept of simultaneous integration and post-multiplication can be 

extended to include any number of post-multiplication factors (both 

constants and variables). 

A simplified method that allows floating-point arithmetic has 

been introduced, which requires the storing of only a single expo- 

nent for each integral cycle. The use of floating-point arithmetic 

provides dynamic scaling during computations, thereby increasing the 

accuracy of problem solutions.  It also allows the scaling routine 

contained in the software to be simplified because any inequalities 

that may occur in the scaling equations can be corrected automati- 

cally by an appropriate change of the respective function exponent. 

This floating-point method does permit simultaneous integration and 

multiplication. 

Hardware construction and testing cf at least two DIC modules 

would be very useful. As experimental information is gathered, the 

full capabilities of the system can be determined and f '.rther im- 

provements may suggest themselves. Future work should be conducted 

to study the feasibility of hardware incorporation of a unit such as 

the DIC into general-purpose computers such that the unit woulH ap- 

pear as another processor. Further study of the "vertical communica- 

tior" approach is warranted because, in particular applications, this 

approach may lead to a superior system. 
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